Arid Zone Research ›› 2025, Vol. 42 ›› Issue (9): 1671-1680.doi: 10.13866/j.azr.2025.09.11
• Desertification Control • Previous Articles Next Articles
LIU Jun1,2(
), ZUO Hejun(
), WANG Haibing1,2,3, ZHANG Xue, LIAO Chengxian1,2,3
Received:2025-02-21
Revised:2025-03-17
Online:2025-09-15
Published:2025-09-16
Contact:
ZUO Hejun
E-mail:314026272@qq.com;zuohj@126.com
LIU Jun, ZUO Hejun, WANG Haibing, ZHANG Xue, LIAO Chengxian. Spatial variations in sediment size serve as a basis for the identification of dust emission source areas around the Badain Jaran Desert[J].Arid Zone Research, 2025, 42(9): 1671-1680.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Surface characteristics and geomorphological features of sampling sites"
| 采样区 | 经纬度 | 样点数量/个 | 分布及主要地面特征 |
|---|---|---|---|
| 温图高勒戈壁 | 41°20′37.16″~41°59′36.49″N, 101°48′45.98″~102°21′29.69″E | 11 | 植被稀少,该区域位于巴丹吉林沙漠北部、阿尔泰山南部,额济纳旗温图高勒苏木境内,样点分布于山前冲洪积扇扇中至扇缘 |
| 阿拉腾敖包戈壁 | 40°16′8.84″~41°14′9.48″N, 103°31′47.18″~103°52′19.31″E | 17 | 主要植被为白刺(Nitraria tangutorum),该区域位于巴丹吉林沙漠东部,阿拉善右旗阿拉腾敖包镇境内,样点分布于山前冲洪积扇扇缘、风蚀残山区 |
| 雅布赖戈壁 | 39°16′0.23″~39°46′12.09″N, 101°47′49.51″~103°6′19.85″E | 12 | 主要植被为白刺(Nitraria tangutorum)、梭梭(Haloxylon ammodendron),该区域位于阿拉善右旗雅布赖镇境内,样点分布于山前洪积扇 |
| 阿拉腾朝克戈壁 | 39°26′16.65″~39°46′19.76″N, 100°19′38.76″~101°44′8.47″E | 24 | 主要植被为白刺(Nitraria tangutorum),该区域位于巴丹吉林沙漠西南,阿拉善右旗阿拉腾朝克苏木境内,样点分布于灌丛沙堆、河道、冲洪积扇扇缘 |
| 鼎新-东风戈壁 | 39°59′11.29″~41°0′59.72″N, 99°46′46.49″~100°42′57.74″E | 18 | 主要植被为白刺(Nitraria tangutorum),该区域位于黑河东岸、巴丹吉林沙漠西部、阿拉善右旗阿拉腾朝克苏木瑙滚布拉格嘎查-金塔县鼎新镇-额济纳旗东风镇宝日乌拉嘎查境内,样点分布于戈壁区冲洪积扇扇缘 |
| 古日乃干湖区 | 40°40′29.91″~40°55′36.70″N, 100°54′56.49″~101°18′36.86″E | 10 | 主要植被为梭梭(Haloxylon ammodendron)、芦苇(Phragmites australis)、白刺(Nitraria tangutorum),位于巴丹吉林沙漠西部,额济纳旗东风镇古日乃嘎查,样点分布于戈壁区冲洪积扇扇缘与古日乃湖过渡带、干盐湖等区域 |
| 居延海干湖区 | 41°33′5.41″~42°1′0.21″N, 100°59′55.96″~101°36′7.17″E | 18 | 主要植被为芦苇(Phragmites australis)、胡杨(Populus euphratica)、红柳(Salix microstachya),位于巴丹吉林沙漠西北部,额济纳旗赛罕陶来苏木东缘戈壁与古居延海的过渡带,样点分布于戈壁区冲洪积扇扇缘与干湖过渡带、干盐湖等区域 |
Tab. 2
Grain size composition of surface and subsurface sediments"
| 采样区 | 表层沉积物/% | 下伏层沉积物/% | |||||||
|---|---|---|---|---|---|---|---|---|---|
| 砾石 | 沙 | 粉粒 | 黏粒 | 砾石 | 沙 | 粉粒 | 黏粒 | ||
| 温图高勒戈壁 | 26.03 | 62.41 | 10.52 | 1.05 | 14.25 | 41.27 | 40.29 | 4.18 | |
| 阿拉腾敖包戈壁 | 13.20 | 75.10 | 10.96 | 0.74 | 19.89 | 42.20 | 34.92 | 3.00 | |
| 雅布赖戈壁 | 10.05 | 84.60 | 5.12 | 0.22 | 10.13 | 81.20 | 7.82 | 0.85 | |
| 阿拉腾朝克戈壁 | 10.27 | 78.02 | 11.00 | 0.71 | 12.55 | 65.21 | 20.12 | 2.12 | |
| 鼎新-东风戈壁 | 25.95 | 58.23 | 14.21 | 1.61 | 5.01 | 30.87 | 52.31 | 11.80 | |
| 古日乃干湖区 | 3.37 | 80.32 | 14.41 | 1.91 | 0.46 | 66.38 | 30.32 | 2.85 | |
| 居延海干湖区 | 3.51 | 78.80 | 16.27 | 1.42 | 5.75 | 57.94 | 33.27 | 3.03 | |
| 全区域 | 13.11 | 73.82 | 12.00 | 1.07 | 11.02 | 52.84 | 31.93 | 4.21 | |
| [1] | 唐进年. 库姆塔格沙漠沉积物特征与沉积环境研究[D]. 北京: 中国林业科学研究院, 2018. |
| [Tang Jinnian. Study on Sediment Characteristics and Depositional Environment in Kumtagh Desert[D]. Beijing: Chinese Academy of Forestry, 2018.] | |
| [2] | Liu X, Wang H, Zuo H, et al. Wind and sand environment and spatial differentiation of sediment in the west desert of Yinshan Mountain in China[J]. Environmental Earth Sciences, 2024, 83(5): 139. |
| [3] | Zhang C, Shen Y, Li Q, et al. Sediment grain-size characteristics and relevant correlations to the aeolian environment in China's eastern desert region[J]. Science of The Total Environment, 2018, 627: 586-599. |
| [4] | Liang A, Dong Z, Qu J, et al. Using spatial variations of grain size to reveal sediment transport in the Kumtagh Sand Sea, Northwest China[J]. Aeolian Research, 2020, 46: 100599. |
| [5] | Shang Y, Kaakinen A, Beets C J, et al. Aeolian silt transport processes as fingerprinted by dynamic image analysis of the grain size and shape characteristics of Chinese loess and Red Clay deposits[J]. Sedimentary Geology, 2018, 375: 36-48. |
| [6] | Hou K, Qian H, Zhang Y, et al. Relationship between fractal characteristics of grain-size and physical properties: Insights from a typical loess profile of the loess Plateau[J]. Catena, 2021, 207: 105653. |
| [7] | Wang H, Jia X, Li K, et al. External supply of dust in the Taklamakan sand sea, Northwest China, reveals the dust-forming processes of the modern sand sea surface[J]. Catena, 2014, 119: 104-115. |
| [8] | Zhang K, Cai D, Ao Y, et al. Local circulation maintains the coexistence of lake-dune pattern in the Badain Jaran desert[J]. Scientific Reports, 2017, 7(1): 40238. |
| [9] | Liang A, Zhang Z, Lizaga I, et al. Which is the dominant source for the aeolian sand in the Badain Jaran Sand Sea, Northwest China: Fluvial or gobi sediments?[J]. Catena, 2023, 225: 107011. |
| [10] | Ta W, Wang H, Jia X. External supply of dust regulates dust emissions from sand deserts[J]. Catena, 2013, 110: 113-118. |
| [11] | Tegen I, Fung I. Contribution to the atmospheric mineral aerosol load from land surface modification[J]. Journal of Geophysical Research: Atmospheres, 1995, 100(D9): 18707-18726. |
| [12] | Ma M, Yang X, He Q, et al. Characteristics of dust devil and its dust emission in northern margin of the Taklimakan Desert[J]. Aeolian Research, 2020, 44: 100579. |
| [13] | 杨兴华, 康永德, 周成龙, 等. 塔克拉玛干沙漠土壤粒度分布特征及其对粉尘释放的影响[J]. 农业工程学报, 2020, 36(5): 167-174. |
| [Yang Xinghua, Kang Yongde, Zhou Chenglong, et al. Characteristics of soil particle size distribution and its effect on dust emission in Taklimakan Desert[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(5): 167-174.] | |
| [14] | Liu X, Sun Y, Vandenberghe J, et al. Palaeoenvironmental implication of grain-size compositions of terrace deposits on the western Chinese Loess Plateau[J]. Aeolian Research, 2018, 32: 202-209. |
| [15] | Liu B, Qu J, Ning D, et al. Grain-size study of aeolian sediments found east of Kumtagh Desert[J]. Aeolian Research, 2014, 13: 1-6. |
| [16] |
闫敏, 左合君, 贾光普, 等. 不同防沙措施的风沙流及其携沙粒度垂直分异特征[J]. 干旱区地理, 2022, 45(5): 1513-1522.
doi: 10.12118/j.issn.1000-6060.2021.580 |
|
[Yan Min, Zuo Hejun, Jia Guangpu, et al. Vertical distribution characteristics of wind-sand flow and its grain size under different sand control measures[J]. Arid Land Geography, 2022, 45(5): 1513-1522.]
doi: 10.12118/j.issn.1000-6060.2021.580 |
|
| [17] | Yang Z, Qian G, Han Z, et al. Variation in grain-size characteristics as a function of wind direction and height in the Sanlongsha dune field of the northern Kumtagh Desert, China[J]. Aeolian Research, 2019, 40: 53-64. |
| [18] | Zhang Z, Bird A, Zhang C, et al. Not all gravel deserts in northern China are sources of regionally deposited dust[J]. Atmospheric Environment, 2022, 273: 118984. |
| [19] |
Wang X, Cai D, Sun J, et al. Contributions of modern Gobi Desert to the Badain Jaran Desert and the Chinese Loess Plateau[J]. Scientific Reports, 2019, 9(1): 985
doi: 10.1038/s41598-018-37635-y pmid: 30700770 |
| [20] | Wang H, Zuo H, Jia X, et al. Full particle size distribution characteristics of land surface sediment and their effect on wind erosion resistance in arid and semiarid regions of Northwest China[J]. Geomorphology, 2021, 372: 107458. |
| [21] | Wang X, Xia D, Wang T, et al. Dust sources in arid and semiarid China and southern Mongolia: Impacts of geomorphological setting and surface materials[J]. Geomorphology, 2008, 97(3-4): 583-600. |
| [22] | Shen Y, Zhang C, Wang R, et al. Spatial heterogeneity of surface sediment grain size and aeolian activity in the gobi desert region of Northwest China[J]. Catena, 2020, 188: 104469. |
| [23] | 高君亮, 吴波, 庞营军, 等. 内蒙古狼山东麓堆积戈壁表层沉积物粒度特征[J]. 干旱区资源与环境, 2020, 34(11): 97-103. |
| [Gao Junliang, Wu Bo, Pang Yingjun, et al. Grain-size characteristics of surface sediments of the accumulation formed Gobi in eastern piedmont of Langshan Mountain, Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2020, 34(11): 97-103.] | |
| [24] | Zhou Y, Yang X, Zhang D, et al. Sedimentological and geochemical characteristics of sediments and their potential correlations to the processes of desertification along the Keriya River in the Taklamakan Desert, western China[J]. Geomorphology, 2021, 375: 107560. |
| [25] | Folk R L, Ward W C. A study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1): 3-26. |
| [26] | Zhang Z, Liang A, Zhang C, et al. Gobi deposits play a significant role as sand sources for dunes in the Badain Jaran Desert, Northwest China[J]. Catena, 2021, 206: 105530. |
| [27] | Wang H, Jia X, Li K, et al. Horizontal wind erosion flux and potential dust emission in arid and semiarid regions of China: A major source area for East Asia dust storms[J]. Catena, 2015, 133: 373-384 |
| [28] | Hu F, Yang X. Geochemical and geomorphological evidence for the provenance of aeolian deposits in the Badain Jaran Desert, northwestern China[J]. Quaternary Science Reviews, 2016, 131: 192. |
| [29] | Hu Z, Wang G, Liu Y, et al. Analysis of spatial and temporal variations of the near-surface wind regime and their influencing factors in the Badain Jaran Desert, China[J]. Atmosphere, 2022, 13(8): 1316. |
| [30] | 吴正. 风沙地貌学[M]. 北京: 科学出版社, 1987. |
| [Wu Zheng. Aeolian Geomorphology[M]. Beijing: Science Press, 1987.] | |
| [31] | 黄镇国, 宗永强. 应用粒度参数区分沉积相——以珠江三角洲为例[J]. 热带地理, 1982, 3(2): 37-42. |
| [Huang Zhenguo, Zong Yongqiang. Application of grain size parameters in distinguishing sedimentary facies: A case study of the Pearl River Delta[J]. Tropical Geography, 1982, 3(2): 37-42.] | |
| [32] | 殷志强, 秦小光, 吴金水, 等. 中国北方部分地区黄土、沙漠沙、湖泊、河流细粒沉积物粒度多组分分布特征研究[J]. 沉积学报, 2009, 27(2): 343-351. |
| [Yin Zhiqiang, Qin Xiaoguang, Wu Jinshui, et al. The multimodal grain-size distribution characteristics of loess, desert, lake and river sediments in some areas of northern China[J]. Acta Sedimentologica Sinica, 2009, 27(2): 343-351.] | |
| [33] | 董治宝, 屈建军, 刘小平, 等. 戈壁表面阻力系数的实验研究[J]. 中国科学: 地球科学, 2001, 6(11): 953-958. |
| [Dong Zhibao, Qu Jianjun, Liu Xiaoping, et al. Experimental study on surface resistance coefficient of gobi[J]. Scientia Sinica (Terrae), 2001, 6(11): 953-958.] | |
| [34] | 高君亮. 干旱区洪积扇戈壁表层沉积物特征研究[D]. 北京: 中国林业科学研究院, 2021. |
| [Gao Junliang. Characteristics of Surface Sediments of the Alluvial Fan Gobi in Arid Area[D]. Beijing: Chinese Academy of Forestry, 2021.] | |
| [35] | Li Z, Chen Q, Dong S, et al. Applicability of rare earth elements in eolian sands from desert as proxies for provenance: A case study in the Badain Jaran Desert, northwestern China[J]. Catena, 2021, 207: 105647. |
| [36] | Chen B, Yang X, Jiang Q, et al. Geochemistry of aeolian sand in the Taklamakan Desert and Horqin Sandy Land, northern China: Implications for weathering, recycling, and provenance[J]. CATENA, 2022, 208: 105769. |
| [37] |
田敏, 钱广强, 杨转玲, 等. 柴达木盆地东北部哈勒腾河流域风成沉积物粒度特征与空间差异[J]. 中国沙漠, 2020, 40(2): 68-78.
doi: 10.7522/j.issn.1000-694X.2019.00108 |
|
[Tian Min, Qian Guangqiang, Yang Zhuanling, et al. Grain size characteristics and spatial variation of aeolian sediments in the Haerteng River, Northeastern Qaidam Basin, China[J]. Journal of Desert Research, 2020, 40(2): 68-78.]
doi: 10.7522/j.issn.1000-694X.2019.00108 |
|
| [38] |
李宽, 贾晓鹏, 熊鑫, 等. 额济纳旗典型地表沙尘释放潜力及沙尘天气频发成因[J]. 中国沙漠, 2019, 39(3): 191-198.
doi: 10.7522/j.issn.1000-694X.2019.00036 |
|
[Li Kuan, Jia Xiaopeng, Xiong Xin, et al. Potential of dust emission and causes of frequent sandstorm activities in Ejina Banner, Inner Mongolia, China[J]. Journal of Desert Research, 2019, 39(3): 191-198.]
doi: 10.7522/j.issn.1000-694X.2019.00036 |
|
| [39] |
王仁德, 李庆, 常春平, 等. 土壤风蚀中粉尘释放问题的研究进展[J]. 中国沙漠, 2023, 43(2): 85-103.
doi: 10.7522/j.issn.1000-694X.2022.00094 |
|
[Wang Rende, Li Qing, Chang Chunping, et al. Review of dust emission in soil wind erosion[J]. Journal of Desert Research, 2023, 43(2): 85-103.]
doi: 10.7522/j.issn.1000-694X.2022.00094 |
|
| [40] | 张晔, 王海兵, 左合君, 等. 中国西北春季沙尘高发区及沙尘源解析[J]. 中国环境科学, 2019, 39(10): 4065-4073. |
| [Zhang Ye, Wang Haibing, Zuo Hejun, et al. Identify high frequent dust areas and their sources in spring in the Northwest of China[J]. China Environmental Science, 2019, 39(10): 4065-4073.] | |
| [41] | 李宽, 熊鑫, 王海兵, 等. 内蒙古西部高频沙尘活动空间分布及其成因[J]. 干旱区研究, 2019, 36(3): 657-663. |
| [Li Kuan, Xiong Xin, Wang Haibing, et al. Spatial distribution and formation causes of frequent dust weather in West Inner Mongolia[J]. Arid Zone Research, 2019, 36(3): 657-663.] | |
| [42] | Tan L, Qu J, Wang T, et al. Vertical flux density and frequency profiles of wind-blown sand as a function of the grain size over gobi and implications for aeolian transport processes[J]. Aeolian Research, 2022, 55: 100787. |
| [43] | Baddock M, Boskovic L, Strong C, et al. Iron-rich nanoparticles formed by aeolian abrasion of desert dune sand: Iron-rich nanopar-ticles from dune sand[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(9): 3720-3729. |
| [44] | Dai Y, Zhang C, Cen S, et al. Abrasion of soil clods with different textures and moisture contents in sand flow environment[J]. Aeoli-an Research, 2020, 46: 100614. |
| [45] | Bullard J E, Mctainsh G H, Pudmenzky C. Factors affecting the na-ture and rate of dust production from natural dune sands[J]. Sedi-mentology, 2007, 54(1): 169-182. |
| [1] | AN Ning, GUO Bin, ZHANG Dongmei, YANG Qiyue, LUO Weicheng. Desert vegetation composition and spatial distribution of soil nutrients in the middle section of Hexi Corridor [J]. Arid Zone Research, 2024, 41(3): 432-443. |
| [2] | MAO Mao, MENG Zhongju, DANG Xiaohong, ZHAO Feiyan, WANG Dehui, CHAI Xiangxian. Population dynamics of natural Haloxylon ammodendron in the eastern margin of Badain Jaran Desert [J]. Arid Zone Research, 2023, 40(6): 971-978. |
| [3] | LIU Xin,JIAO Jian,WANG Ting,ZHANG Lingyu,LI Chaozhou. Population ecological features of Phragmites australis in sandy habitats on the southern edge of Badain Jaran Desert [J]. Arid Zone Research, 2022, 39(1): 220-229. |
| [4] | ZHAO Peng,ZHU Shujuan,DUAN Xiaofeng,CHANG Zhaofeng,KANG Caizhou,WANG Fanglin,WANG Yuqi,GAO Decai. Spatial distribution characteristics of grain size of surface soil in the sand-resitant belt of Minqin Oasis marginal [J]. Arid Zone Research, 2021, 38(5): 1335-1345. |
| [5] | CAI Yingying,LI Jiyan,QU Xin,WANG Meng,WANG Yingying. Grain size characteristics of earth forest sediments in the Datong Basin [J]. Arid Zone Research, 2021, 38(3): 892-900. |
| [6] | QIN Jie,SI Jianhua,JIA Bing,ZHAO Chunyan,LI Duan,LUO Huan,REN Lixin. Study on the relationship between vegetation community characteristics and soil moisture in Badain Jaran Desert [J]. Arid Zone Research, 2021, 38(1): 207-222. |
| [7] | ZHANG Wen-jia, WANG Nai-ang, YU Xin-ran, NIN Zhen-min, ZHAO Li-qiang. Magnitude of groundwater evapotranspiration in the Badain Jaran Desert based on groundwater dynamics method and empirical model:A case study of the Sumujilin Lake Area [J]. Arid Zone Research, 2020, 37(5): 1215-1222. |
| [8] | CHANG Hong, ZUO He-jun, WANG Hai-bing, YAN Min. Multi-fractal Features and Their Significances of Surface Sediments along both Banks of the Yellow River Reach in the Ulanbuh Desert [J]. Arid Zone Research, 2019, 36(6): 1559-1567. |
| [9] | ZHAO Li-qiang, ZHANG Lv-lv, WANG Nai-ang, ZHANG De-zhong, NIU Zheng-min. Morphology of the Lakes in the Badain Jaran Desert [J]. , 2018, 35(5): 1001-1011. |
| [10] | HAN Peng-fei, WANG Xu-sheng, HU Xiao-nong, JIANG Xiao-wei, ZHOU Yan-yi. Dynamic Relationship between Lake Surface Evaporation and Meteorological Factors in the Badain Jaran Desert [J]. , 2018, 35(5): 1012-1020. |
| [11] | HE Qing, HU Wen-Feng, YANG Xing-Hua, AI Li-·Mai-Mai-Ti-Ming, ZHAO Cong-Min. Research on Wind Profile and Sand Drift Structure in Guaizi Lake Region in the Badain Jaran Desert [J]. , 2012, 29(3): 517-523. |
|
||