Arid Zone Research ›› 2025, Vol. 42 ›› Issue (2): 349-359.doi: 10.13866/j.azr.2025.02.14
• Ecology and Environment • Previous Articles Next Articles
WANG Hao1,2,3,4,5(), LI Shengyu1,2,3,4(
), WANG Haifeng1,2,3,4, FAN Jinglong1,2,3,4, CUI Kejun1,2,3,4,5
Received:
2024-09-13
Revised:
2024-10-25
Online:
2025-02-15
Published:
2025-02-21
Contact:
LI Shengyu
E-mail:wang_hao0607@163.com;oasis@ms.xjb.ac.cn
WANG Hao, LI Shengyu, WANG Haifeng, FAN Jinglong, CUI Kejun. Wind tunnel experiment and numerical simulation of surface erosion and accumulation in desert photovoltaic power stations[J].Arid Zone Research, 2025, 42(2): 349-359.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | 张海龙. 中国新能源发展研究[D]. 吉林: 吉林大学, 2014. |
[Zhang Hailong. Research on the Development of New Energy in China[D]. Jilin:Jilin University, 2014. ] | |
[2] | Garcia E T, Ogueta M, Avila S, et al. On the effects of windbreaks on the aerodynamic loads over parabolic solar troughs[J]. Energy, 2014, 115(3): 293-300. |
[3] | Chang R, Shen Y, Luo Y, et al. Observed surface radiation and temperature impacts from the large-scale deployment of photovoltaic in the barren area of Gonghe, China[J]. Renewable Energy, 2018, 118: 131-137. |
[4] | Marrou H, Dufour L, Wery J. How does a shelter of solar panels influence water flows in a soil-crop system[J]. European Journal of Agronomy, 2013, 50(5): 38-51. |
[5] | 何继江. 沙漠中产生的6.5万亩草原——宁夏中卫腾格里沙漠光伏治沙考察侧记[J]. 电气时代, 2022, 45(5): 6-18. |
[He Jijiang. 65000 mu grassland produced in the desert-sidelights on the investigation of photovoltaic sand control in Tengger Desert, Zhongwei, Ningxia[J]. Electrical Age, 2022, 45(5): 6-18. ] | |
[6] | 杨帆, 牛天祥, 张振师, 等. 沙漠地区光伏电站风沙活动规律及其影响因素[J]. 西北水电, 2022, 30(5):79-84. |
[Yang Fan, Niu Tianxiang, Zhang Zhenshi, et al. Wind-sand activity characteristics and its influence factors in photovoltaic power station in sand area[J]. Northwest Hydropower, 2022, 30(5): 79-84. ] | |
[7] | Chang Z F, Liu S, Zhu S J, et al. Ecological functions of desert Gobi photovoltaic power plant[J]. Journal of Resources and Ecology, 2016, 7(2): 130-136. |
[8] | Gonzaga L G, Domingos J L, Alves A J, et al. Wind’s Actions Effects on Photovoltaic Panels Installed on Rooftop of Buildings[D]. Chicago: University of Chicago, 2017. |
[9] | 乔学, 谷帅, 罗晓群. 基于数值风洞的光伏支架阵列风载荷分布[J]. 计算机辅助工程, 2018, 27(1): 51-56. |
[Qiao Xue, Gu Shuai, Luo Xiaoqun. Wind load distribution for photovoltaic bracket array based on numerical wind tunnel[J]. Computer Aided Engineering, 2018, 27(1): 51-56. ] | |
[10] | 房彦山, 张国飞, 唐雯静. 太阳能光伏板阵列风压特性数值模拟研究[J]. 电力勘测设计, 2018, 30(4): 76-80. |
[Fang Yanshan, Zhang Guofei, Tang Wenjing. Study on the numerical simulation of solar photovoltaic panels array of wind pressure characteristics[J]. Electric Power Survey and Design, 2018, 30(4): 76-80. ] | |
[11] | 张大千, 吴康宁. 挡风墙对近地面光伏板风压的影响研究[J]. 沈阳航空航天大学学报, 2020, 37(3): 12-23. |
[Zhang Daqian, Wu Kangning. Study on the influence of windshield wall on wind pressure of near-surface photovoltaic panel[J]. Journal of Shenyang Aerospace University, 2020, 37(3): 12-23. ] | |
[12] | 张文龙, 来永斌, 王龙, 等. 风向角变化对外墙光伏阵列风载荷影响研究[J]. 电子测试, 2021, 35(7): 57-64. |
[Zhang Wenlong, Lai Yongbin, Wang Long, et al. Study on the influence of wind direction angle change on wind load of photovoltaic array on external wall[J]. Electronic Test, 2021, 35(7): 57-64. ] | |
[13] | 唐国栋, 蒙仲举, 党晓宏, 等. 沙区光伏阵列对近地层风沙输移的干扰效应[J]. 农业工程学报, 2021, 37(3): 101-110. |
[Tang Guodong, Meng Zhongju, Dang Xiaohong, et al. Interference effect of solar photovoltaic array on near surface aeolian sand transport in sandy areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(3): 101-110. ] | |
[14] | Yemenici O, Aksoy M O. An experimental and numerical study of wind effects on a ground-mounted solar panel at different panel tilt angles and wind directions[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 213(4): 1-17. |
[15] | 黄政, 杨国海, 韩晓丹, 等. 双列布局阵列下太阳能光伏板表面风压分布特性CFD数值计算分析[C]// 天津大学, 天津市钢结构学会. 第十六届全国现代结构工程学术研讨会论文集. 中国市政工程华北设计研究总院有限公司, 2016: 6. |
[Huang Zheng, Yang Guohai, Han Xiaodan, et al. CFD numerical calculation and analysis of surface wind pressure distribution characteristics of solar photovoltaic panels under double row layout array[C]// Tianjin University, Tianjin Steel Structure Society Proceedings of the 16th National Symposium on Modern Structural Engineering China Municipal Engineering North China Design and Research Institute Co., Ltd., 2016: 6. ] | |
[16] | 李居庆, 何艳丽, 徐志宏. 光伏板阵列风荷载遮挡效应分析[J]. 山西建筑, 2019, 45(2): 54-56. |
[Li Juqing, He Yanli, Xu Zhihong. Analysis of wind load shielding effect of array photovoltaic panel[J]. Shanxi Architecture, 2019, 45(2): 54-56. ] | |
[17] | You Jangyoul, Lim Myungkwan, You Kipyo, et al. Wind coefficient distribution of arranged ground photovoltaic panels[J]. Sustainability, 2021, 13(5): 1-19. |
[18] |
袁方, 张振师, 卜崇峰, 等. 毛乌素沙地光伏电站项目区风速流场及风蚀防治措施[J]. 中国沙漠, 2016, 36(2): 287-294.
doi: 10.7522/j.issn.1000-694X.2015.00200 |
[Yuan Fang, Zhang Zhenshi, Bu Chongfeng, et al. Wind speed flow field and wind erosion control measures at photovoltaic power plant project area in mu us sandy land[J]. Journal of Desert Research, 2016, 36(2): 287-294. ]
doi: 10.7522/j.issn.1000-694X.2015.00200 |
|
[19] | 龙浩楠. 草原地区的太阳能光伏板风荷载风洞实验研究[J]. 河南科技, 2022, 41(10): 79-83. |
[Long Haonan. Wind tunnel test study of wind load on solar photovoltaic panels in grassland area[J]. Henan Science and Technology, 2022, 41(10): 79-83. ] | |
[20] | 张学森, 李丹, 吴香国, 等. 建筑女儿墙对光伏板风载特性影响的风洞实验研究[J]. 建筑结构, 2022, 52(14): 115-123. |
[Zhang Xuesen, Li Dan, Wu Xiangguo, et al. Wind tunnel test study on influence of building parapet on wind load characteristics of photovoltaic panel[J]. Building Structure, 2022, 52(14): 115-123. ] | |
[21] | 孙涛, 王祺, 刘世增, 等. 单排光伏板防风固沙功能的风洞模拟研究[J]. 干旱区资源与环境, 2022, 36(4): 111-119. |
[Sun Tao, Wang Qi, Liu Shizeng, et al. Wind tunnel simulation of wind prevention and sand fixation of single-row photovoltaic panels[J]. Journal of Arid Land Resources and Environment, 2022, 36(4): 111-119. ] | |
[22] | Hargreaves D, Wright N. On the use of the k-ε model in commercial CFD software to model the neutral atmospheric boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(5): 355-369. |
[23] | 贺晶, 吴新宏, 杨婷婷, 等. 基于临界起沙风速的草地防风固沙功能研究[J]. 中国草地学报, 2013, 35(5): 103-107. |
[He Jing, Wu Xinhong, Yang Tingting, et al. Research on sand-fixing function of grassland based on threshold wind velocity[J]. Chinese Journal of Grassland, 2013, 35(5): 103-107. ] | |
[24] | Li S, Weigand J, Ganguly S. The potential for climate impact from widespread deployment of utility-scale solar energy installations: An environmental remote sensing perspective[J]. Journal of Remote Sensing, 2017, 6: 1-6. |
[25] | Li Y, Kalnay E, Zeng N, et al. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation[J]. Science, 2018, 361(54): 1019-1022. |
[26] | Wang Z Y, Wang J, Dang X H, et al. Impacts of photovoltaic power station construction on ecology environment in sandy area[J]. Soil Water Conserve, 2019, 39(5): 191-196. |
[27] | Anna S, Anssi L, Markku K. The influence of solar power plants on microclimatic conditions and the biotic community in Chilean desert environments[J]. Environmental Management, 2017, 30(15): 630-642. |
[28] | 唐国栋, 蒙仲举, 高永, 等. 基于风洞试验的风沙区光伏阵列近地表形态变化规律研究[J]. 水土保持通报, 2022, 42(4): 1-8. |
[Tang Guodong, Meng Zhongju, Gao Yong, et al. A study on solar photovoltaic array surface morphology variation in sandy area based on wind tunnel test[J]. Bulletin of Soil and Water Conservation, 2022, 42(4): 1-8. ] | |
[29] | 范华伟. 澳大利亚霍顿太阳能电站建设管理探索与实践[J]. 水电与新能源, 2020, 34(4): 32-47. |
[Fan Huawei. Experience of the construction management in haughton solar power station in Australia[J]. Hydroelectric and New Energy, 2020, 34(4): 32-47. ] | |
[30] |
贾瑞庭, 蒙仲举, 党晓宏, 等. 库布齐沙漠200 MWp光伏阵列的截流阻沙效应研究[J]. 中国农业科技导报, 2021, 23(4): 137-144.
doi: 10.13304/j.nykjdb.2020.0586 |
[Jia Ruiting, Meng Zhongju, Dang Xiaohong, et al. Study on the intercepting and blocking sand effect of 200 MWp photovoltaic array in Kubuqi Desert[J]. Journal of Agricultural Science and Technology, 2021, 23(4): 137-144. ]
doi: 10.13304/j.nykjdb.2020.0586 |
|