Arid Zone Research ›› 2025, Vol. 42 ›› Issue (2): 191-201.doi: 10.13866/j.azr.2025.02.01
• Weather and Climate • Previous Articles Next Articles
ZHAO Shikang1,2(), MU Zhenxia1,2(
), LI Gang3, YANG Rongqin1,2, HUANG Mianting1,2
Received:
2024-06-23
Revised:
2025-01-05
Online:
2025-02-15
Published:
2025-02-21
Contact:
MU Zhenxia
E-mail:320222258@xjau.edu.cn;xjmzx@xjau.edu.cn
ZHAO Shikang, MU Zhenxia, LI Gang, YANG Rongqin, HUANG Mianting. Spatial and temporal evolution characteristics of atmospheric precipitable water vapor in Xinjiang and its relationship with precipitation conversion[J].Arid Zone Research, 2025, 42(2): 191-201.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
The r, RMSE and MAE of PWV at different stations for different data sources from 2002 to 2020"
站点 | 探空-ERA5 | ||
---|---|---|---|
r | RMSE/mm | MAE/mm | |
阿勒泰 | 0.99 | 1.46 | 0.97 |
伊宁 | 0.97 | 1.30 | 1.00 |
乌鲁木齐 | 0.97 | 2.05 | 1.27 |
库车 | 0.99 | 3.10 | 2.54 |
喀什 | 0.99 | 3.74 | 3.12 |
若羌 | 0.99 | 2.16 | 1.52 |
和田 | 0.99 | 3.90 | 3.13 |
民丰 | 0.99 | 4.71 | 3.67 |
哈密 | 0.98 | 1.11 | 0.80 |
平均 | 0.98 | 2.60 | 2.00 |
[1] |
王朋, 石玉立. 青海地区TRMM 3B43降水产品融合降尺度与时空特征分析[J]. 干旱区地理, 2024, 47(7): 1136-1146.
doi: 10.12118/j.issn.1000-6060.2023.559 |
[Wang Peng, Shi Yuli. Fused-downscaling framework and spatiotemporal characteristics of TRMM 3B43 precipitation product in the Qinghai region[J]. Arid Land Geography, 2024, 47(7): 1136-1146. ]
doi: 10.12118/j.issn.1000-6060.2023.559 |
|
[2] |
潘锋, 何大明, 曹杰, 等. 夏季怒江流域水汽输送多支特征及对降水影响[J]. 地理学报, 2023, 78(1): 87-100.
doi: 10.11821/dlxb202301006 |
[Pan Feng, He Daming, Cao Jie, et al. Multiple branches of water vapor transport over the Nujiang River Basin in summer and its impact on precipitation[J]. Acta Geographica Sinica, 2023, 78(1): 87-100. ]
doi: 10.11821/dlxb202301006 |
|
[3] |
马新平, 尚可政, 李佳耘, 等. 1981—2010年中国西北地区东部大气可降水量的时空变化特征[J]. 中国沙漠, 2015, 35(2): 448-455.
doi: 10.7522/j.issn.1000-694X.2014.00048 |
[Ma Xinping, Shang Kezheng, Li Jiayun, et al. Spatial and temporal changes of atmospheric precipitable water in the eastern part of Northwest China from 1981 to 2010[J]. Journal of Desert Research, 2015, 35(2): 448-455. ]
doi: 10.7522/j.issn.1000-694X.2014.00048 |
|
[4] | 刘蕊, 杨青, 王敏仲. 再分析资料与经验关系计算的新疆地区大气水汽含量比较分析[J]. 干旱区资源与环境, 2010, 24(4): 77-85. |
[Liu Rui, Yang Qing, Wang Minzhong. Intercomparison and analysis of the result about atmospheric precipitable water caculated by NCEP reanalysis and empirical formula[J]. Journal of Arid Land Resources and Environment, 2010, 24(4): 77-85. ] | |
[5] | 强安丰, 魏加华, 解宏伟, 等. 三江源区大气水汽含量时空特征及其转化变化[J]. 水科学进展, 2019, 30(1): 14-23. |
[Qiang Anfeng, Wei Jiahua, Xie Hongwei, et al. Spatial-temporal characteristics and changes of atmospheric water vapor in the Three River Headwaters region[J]. Advances in Water Science, 2019, 30(1): 14-23. ] | |
[6] | 杨红梅, 葛润生, 徐宝祥. 用单站探空资料分析对流层气柱水汽总量[J]. 气象, 1998, 24(9): 9-12. |
[Yang Hongmei, Ge Runsheng, Xu Baoxiang. Analysis of total water vapor in tropospheric gas column using single station sounding data[J]. Meteorology, 1998, 24(9): 9-12. ] | |
[7] | Alshawaf F, Fuhrmann T, Knopfler A, et al. Accurate estimation of atmospheric water vapor using GNSS observations and surface meteorological data[J]. Geoscience and Remote Sensing, 2015, 53(7): 3764-3771. |
[8] | 杨景梅, 邱金桓. 我国可降水量同地面水汽压关系的经验表达式[J]. 大气科学, 1996, 20(5): 620-626. |
[Yang Jingmei, Qiu Jinhuan. The empirical expression of the relation between precipitable water and ground water vapor pressure for some areas in China[J]. Chinese Journal of Atmospheric Sciences, 1996, 20(5): 620-626. ] | |
[9] | Wang Z, Chen P, Wang R, et al. Performance of ERA5 data in retrieving precipitable water vapor over Hong Kong[J]. Advances in Space Research, 2023, 71(10): 4055-4071. |
[10] |
Zhang W, Zhang H, Liang H, et al. On the suitability of ERA5 in hourly GPS precipitable water vapor retrieval over China[J]. Journal of Geodesy, 2019, 93: 1897-1909.
doi: 10.1007/s00190-019-01290-6 |
[11] | 施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003, 23(2): 152-164. |
[Shi Yafeng, Shen Yongping, Li Dongliang, et al. Discussion on the present climate change from warm-dry to warm-wet in Northwest China[J]. Quaternary Sciences, 2003, 23(2): 152-164. ] | |
[12] |
董翰林, 王文婷, 谢云, 等. 新疆气候干湿变化特征及其影响因素[J]. 干旱区研究, 2023, 40(12): 1875-1884.
doi: 10.13866/j.azr.2023.12.01 |
[Dong Hanlin, Wang Wenting, Xie Yun, et al. Climate dry-wet conditions, changes, and their driving factors in Xinjiang[J]. Arid Zone Research, 2023, 40(12): 1875-1884. ]
doi: 10.13866/j.azr.2023.12.01 |
|
[13] | Tian J, Zhang Z, Zhao T, et al. Warmer and wetter climate induced by the continual increase in atmospheric temperature and precipitable water vapor over the arid and semi-arid regions of Northwest China[J]. Journal of Hydrology: Regional Studies, 2022, 42: 101151. |
[14] |
张玉欣, 马学谦, 韩辉邦, 等. 2014—2018年青海省云水资源时空分布特征[J]. 干旱区研究, 2021, 38(5): 1254-1262.
doi: 10.13866/j.azr.2021.05.07 |
[Zhang Yuxin, Ma Xueqian, Han Huibang, et al. Analysis of spatial and temporal distribution characteristics of cloud water resources in Qinghai Province from 2014 to 2018[J]. Arid Zone Research, 2021, 38(5): 1254-1262. ]
doi: 10.13866/j.azr.2021.05.07 |
|
[15] | 李进, 李栋梁, 张杰. 黄河流域夏季有效降水转化率[J]. 水科学进展, 2012, 23(3): 346-354. |
[Li Jin, Li Dongliang, Zhang Jie. Research on summer effective precipitation conversion rate over the Yellow River Basin[J]. Advances in Water Science, 2012, 23(3): 346-354. ] | |
[16] |
王娜, 顾伟宗, 邱粲, 等. 山东夏季空中水汽分布和水汽输送特征[J]. 高原气象, 2021, 40(1): 159-168.
doi: 10.7522/j.issn.1000-0534.2019.00119 |
[Wang Na, Gu Weizong, Qiu Can, et al. Characteristics of atmospheric water vapor distribution and transport during summer over Shandong Province[J]. Plateau Meteorology, 2021, 40(1): 159-168. ]
doi: 10.7522/j.issn.1000-0534.2019.00119 |
|
[17] | 李帅, 谢国辉, 何清, 等. 阿勒泰地区降水量、可降水量及降水转化率分析[J]. 冰川冻土, 2008, 30(4): 675-680. |
[Li Shuai, Xie Guohui, He Qing, et al. Research on precipitation, precipitable water and the precipitation conversion efficiency of Altay Prefecture[J]. Journal of Glaciology and Geocryology, 2008, 30(4): 675-680. ] | |
[18] | 周顺武, 吴萍, 王传辉, 等. 青藏高原夏季上空水汽含量演变特征及其与降水的关系[J]. 地理学报, 2011, 66(11): 1466-1478. |
[Zhou Shunwu, Wu Ping, Wang Chuanhui, et al. Spatial distribution of atmospheric water vapor and its relationship with precipitation in summer over the Tibetan Plateau[J]. Acta Geographica Sinica, 2011, 66(11): 1466-1478. ]
doi: 10.11821/xb201111003 |
|
[19] | 范雪薇, 刘海隆, 赵文宇, 等. 基于NCEP资料新疆降水转化率的研究[J]. 石河子大学学报(自然科学版), 2016, 34(3): 372-378. |
[Fan Xuewei, Liu Hailong, Zhao Wenyu, et al. Analysis of precipitation conversion in Xinjiang based on NCEP data[J]. Journal of Shihezi University(Natural Science), 2016, 34(3): 372-378. ] | |
[20] |
许超杰, 窦燕, 孟琪琳. 基于EMD-GWO-LSTM模型的新疆标准化降水蒸散指数预测方法研究[J]. 干旱区研究, 2024, 41(4): 527-539.
doi: 10.13866/j.azr.2024.04.01 |
[Xu Chaojie, Dou Yan, Meng Qilin. Prediction of the standardized precipitation evapotranspiration index in the Xinjiang region using the EMD-GWO-LSTM model[J]. Arid Zone Research, 2024, 41(4): 527-539. ]
doi: 10.13866/j.azr.2024.04.01 |
|
[21] | 虞佳陆, 张景, 张敏, 等. 基于标准化前期降水蒸散指数的新疆干旱时空演变特征[J]. 干旱地区农业研究, 2023, 41(4): 275-288. |
[Yu Jialu, Zhang Jing, Zhang Min, et al. SAPEI-Based spatial and temporal variation characteristics of drought in Xinjiang[J]. Agricultural Research in the Arid Areas, 2023, 41(4): 275-288. ] | |
[22] | Zhang R, Yuan Y, Gou X, et al. Tree-ring-based moisture variability in western Tianshan Mountains since A.D. 1882 and its possible driving mechanism[J]. Agricultural Forest Meteorology, 2016, 218: 267-276. |
[23] | He B, Chang J, Wang Y, et al. Spatio-temporal evolution and non-stationary characteristics of meteorological drought in inland arid areas[J]. Ecological Indicators, 2021, 126: 107644. |
[24] | 赵玲, 安沙舟, 杨莲梅, 等. 1976—2007年乌鲁木齐可降水量及其降水转化率[J]. 干旱区研究, 2010, 27(3): 433-437. |
[Zhao Ling, An Shazhou, Yang Lianmei, et al. Study on precipitable water and precipitation conversion efficiency in Urumqi during the period of 1976-2007[J]. Arid Zone Research, 2010, 27(3): 433-437. ] | |
[25] | 李霞, 张广兴. 天山可降水量和降水转化率的研究[J]. 中国沙漠, 2003, 23(5): 33-37. |
[Li Xia, Zhang Guangxin. Research on precipitable water and precipitation conversion efficiency around Tianshan Mountain Area[J]. Journal of Desert Research, 2003, 23(5): 33-37. ] | |
[26] | Wang Q, Wang X, Zhou Y, et al. The dominant factors and influence of urban characteristics on land surface temperature using random forest algorithm[J]. Sustainable Cities and Society, 2022, 79: 103722. |
[27] |
姚俊强. 新疆空中水资源和地表水资源变化特征研究[J]. 干旱区研究, 2024, 41(2): 181-190.
doi: 10.13866/j.azr.2024.02.01 |
[Yao Junqiang. Change in atmospheric and surface water resource in Xinjiang[J]. Arid Zone Research, 2024, 41(2): 181-190. ]
doi: 10.13866/j.azr.2024.02.01 |
|
[28] | 王鹏祥, 何金海, 郑有飞, 等. 夏季北极涛动与西北夏季干湿特征的年代际关系[J]. 中国沙漠, 2007, 27(5): 883-889. |
[Wang Pengxiang, He Jinhai, Zheng Youfei, et al. Inter-decadal relationships between summer Arctic Oscillation and aridity-wetness feature in Northwest China[J]. Journal of Desert Research, 2007, 27(5): 883-889. ] | |
[29] | Ma Z. The interdecadal trend and shift of dry/wet over the central part of North China and their relationship to the Pacific Decadal Oscillation (PDO)[J]. Chinese Science Bulletin, 2007, 52(15): 2130-2139. |
[30] | 贾艳青, 张勃. 近57年中国北方气候干湿变化及与太平洋年代际振荡的关系[J]. 土壤学报, 2019, 56(5): 1085-1097. |
[Jia Yanqing, Zhang Bo. Relationship of dry-wet climate changes in Northern China in the past 57 years with Pacific Decadal Oscillation (PDO)[J]. Acta Pedologica Sinica, 2019, 56(5): 1085-1097. ] | |
[31] | 从靖, 赵天保, 马玉霞. 中国北方干旱半干旱区降水的多年代际变化特征及其与太平洋年代际振荡的关系[J]. 气候与环境研究, 2017, 22(6): 643-657. |
[Cong Jing, Zhao Tianbao, Ma Yuxia. Multi-decadal variability of precipitation in arid and semi-arid region of Northern China and its relationship with Pacific Decadal Oscillation index[J]. Climatic and Environmental Research, 2017, 22(6): 643-657. ] | |
[32] | Liu K, Xu K, Zhu C, et al. Diversity of marine heatwaves in the South China sea regulated by ENSO phase[J]. Journal of Climate, 2022, 35(2): 877-893. |
[1] | LYU Ning, GUO Yu, PENG Qin, YIN Feihu, ZHANG Jiaqi, LIU Xingren, ZENG Mei, XU Zihan. Spatiotemporal evolution characteristics and contributing factors of the carbon effect in cultivated land use in Xinjiang [J]. Arid Zone Research, 2025, 42(1): 179-190. |
[2] | ZOU Bin, ZOU Shan, YANG Yuhui. Dynamic changes and driving factors of surface water body in Xinjiang from 1990 to 2023 [J]. Arid Zone Research, 2025, 42(1): 40-50. |
[3] | SUN Linlin, LIU Qiong, HUANG Guan, CHEN Yonghang, WEI Xin, GUO Yulin, ZHANG Taixi, GAO Tianyi, XU Yunhong. Analysis of surface solar radiation under different cloud conditions in Xinjiang and the surrounding “Belt and Road” regions [J]. Arid Zone Research, 2024, 41(9): 1480-1490. |
[4] | JIAN Zhengbo, LUO Hao, SHAN Nana. A study on the spatial and temporal evolution and carbon effects of production-living-ecological in Xinjiang under carbon peak and carbon neutrality goals [J]. Arid Zone Research, 2024, 41(7): 1238-1248. |
[5] | LIU Huaqing, WANG Bo, JIA Yanyan, XIE Xinran, ZHANG Wei. Characterization of the freezing injury to Juglans regia at different slope positions in the West Tianshan valley of Xinjiang, China [J]. Arid Zone Research, 2024, 41(6): 1079-1088. |
[6] | MA Yuanzhi, QIN Xiaolin, LING Hongbo, YAN Junjie, ZHANG Guangpeng. Spatio-temporal characteristics and trends of area changes in the small and medium-sized lakes in Xinjiang, China, from 1991 to 2020 [J]. Arid Zone Research, 2024, 41(6): 905-916. |
[7] | ZHANG Haozhe, XUE Yayong, MA Yuanyuan, XUE Guoxuan. Carbon sequestration potential of oasis ecosystem in Xinjiang, China [J]. Arid Zone Research, 2024, 41(6): 998-1009. |
[8] | XU Chaojie, DOU Yan, MENG Qilin. Prediction of the standardized precipitation evapotranspiration index in the Xinjiang region using the EMD-GWO-LSTM model [J]. Arid Zone Research, 2024, 41(4): 527-539. |
[9] | SI Qi, FAN Haoran, DONG Wenming, LIU Xinping. Landscape ecological risk assessment and prediction for the Yarkant River Basin, Xinjiang, China [J]. Arid Zone Research, 2024, 41(4): 684-696. |
[10] | BAO Jiayu, LI Xianglong, HU Qiwen, LI Tao. Spatiotemporal characteristics of carbon emissions from energy consumption and the approach to energy structure adjustment in Xinjiang [J]. Arid Zone Research, 2024, 41(3): 490-498. |
[11] | YAO Junqiang. Change in atmospheric and surface water resource in Xinjiang [J]. Arid Zone Research, 2024, 41(2): 181-190. |
[12] | WU Mingjiang, QIU Juan, ZHENG Feng, LING Xiaobo, WANG Xinyu, YANG Yang, YANG Jiaxin, LIU Liqiang. Study on shrub species diversity and niche of wild fruit forest in Xinjiang [J]. Arid Zone Research, 2024, 41(12): 2094-2109. |
[13] | XU Yunhong, LIU Qiong, CHEN Yonghang, WEI Xin, LIU Xin, ZHANG Taixi, SHAO Weiling, YANG Hequn, ZHANG Chengming. Impact of land cover variations on surface albedo in Xinjiang and its surrounding Central Asian region [J]. Arid Zone Research, 2024, 41(10): 1649-1661. |
[14] | JIN Chenyang, DU Hongru. Characteristics of spatial and temporal changes and zoning of cultivated land resilience in Xinjiang [J]. Arid Zone Research, 2024, 41(10): 1778-1788. |
[15] | LI Xiaofeng, HUI Tingting, LI Yaoming, MAO Jiefei, WANG Guangyu, FAN Lianlian. Effects of different grazing management strategies on plant diversity in the mountain grassland of Xinjiang, China [J]. Arid Zone Research, 2024, 41(1): 124-134. |
|