[1] |
孙保平, 丁国栋, 姚云峰. 荒漠化防治工程学[M]. 北京: 中国林业出版社, 2000: 38-52.
|
|
[Sun Baoping, Ding Guodong, Yao Yunfeng. Desertification Control Engineering[M]. Beijing: China Forestry Press, 2000: 38-52. ]
|
[2] |
张圆, 李芳, 屈建军, 等. 机械沙障组合对土壤含水量及温度的影响[J]. 中国沙漠, 2016, 36(6): 1533-1538.
doi: 10.7522/j.issn.1000-694X.2016.00126
|
|
[Zhang Yuan, Li Fang, Qu Jianjun, et al. Effect of sand barrier combinations on the water content and temperature of soil[J]. Journal of Desert Research, 2016, 36(6): 1533-1538. ]
doi: 10.7522/j.issn.1000-694X.2016.00126
|
[3] |
张帅, 丁国栋, 高广磊, 等. 不同年限的草方格沙障对生态恢复的影响[J]. 中国水土保持科学, 2018, 16(5): 10-15.
|
|
[Zhang Shuai, Ding Guodong, Gao Ghuanglei, et al. Effects of straw checkerboard barrier in different setting years on ecological restoration[J]. Science of Soil and Water Conservation, 2018, 16(5): 10-15. ]
|
[4] |
丁新辉, 刘孝盈, 刘广全. 我国沙障固沙技术研究进展及展望[J]. 中国水土保持, 2019(1): 35-37.
|
|
[Ding Xinhui, Liu Xiaoying, Liu Guangquan. Research progress and prospects of sand barrier technology in China[J]. Science of Soil and Water Conservation, 2019(1): 35-37. ]
|
[5] |
高永, 邱国玉, 丁国栋, 等. 沙柳沙障的防风固沙效益研究[J]. 中国沙漠, 2004, 24(3): 111-116.
|
|
[Gao Yong, Qiu Guoyu, Ding Guodong, et al. Effect of Salix psammophila checkerboard on reducing wind and stabilizing sand[J]. Journal of Desert Research, 2004, 24(3): 111-116. ]
|
[6] |
Liu Li, Bo Tianli. Effects of checkerboard sand barrier belt on sand transport and dune advance[J]. Aeolian Research, 2020, 42: 100546.
doi: 10.1016/j.aeolia.2019.100546
|
[7] |
王艺钊, 原伟杰, 丁国栋, 等. 聚乳酸(PLA)沙障凹曲面及沉积物粒度特征研究[J]. 干旱区地理, 2020, 43(3): 671-678.
|
|
[Wang Yizhao, Yuan Weijie, Ding Guodong, et al. Concave surface features and grain-size characteristics in polylactic acid sand barrier[J]. Arid Land Geography, 2020, 43(3): 671-678. ]
|
[8] |
李红悦, 哈斯额尔敦. 机械沙障固沙效应及生态效应的研究综述[J]. 北京师范大学学报(自然科学版), 2020, 56(1): 63-67.
|
|
[Li Hongyue, Ha Sieerdun. Sand-fixing effect and ecological effect of mechanical sand barriers: A review[J]. Journal of Beijing Normal University (Natural Science), 2020, 56(1): 63-67. ]
|
[9] |
Maier S, Tamm A, Wu DM et al. Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts[J]. The ISME Journal, 2018, 12:1032-1046.
doi: 10.1038/s41396-018-0062-8
|
[10] |
Belnap J, Lange O L. Biological Soil Crusts: Structure, Function and Management[M]. Berlin, Germany: Springer, 2003: 503.
|
[11] |
Belnap J, Weber B, Büdel B. Biological soil crusts as an organizing principle in drylands[C]//Weber B, Büdel B, Belnap J. Biological Soil Crusts:An Organizing Principle in Drylands. Cham, Switzerland: Springer, 2016.
|
[12] |
李新荣, 谭会娟, 回嵘, 等. 中国荒漠与沙地生物土壤结皮研究[J]. 科学通报, 2018, 63(23): 2320-2334.
|
|
[Li Xinrong, Tan Huijian, Hui Rong, et al. Study on biological soil crusts in deserts and sandlands of China[J]. Science Bulletin, 2018, 63(23): 2320-2334. ]
|
[13] |
Bowker M A, Maestre F T, Mau R L. Diversity and patch-size distributions of biological soil crusts regulate dryland ecosystem multifunctionality[J]. Ecosystems, 2013, 16: 923-933.
doi: 10.1007/s10021-013-9644-5
|
[14] |
Zhang Y M, Wang H L, Wang X Q, et al. The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of northwestern China[J]. Geoderma, 2006, 132: 441-449.
doi: 10.1016/j.geoderma.2005.06.008
|
[15] |
Rossia F, Li H, Liu YD, et al. Cyanobacterial inoculation (cyanobacterisation): Perspectives for the development of a standardized multifunctional technology for soil fertilization and desertification reversal[J]. Earth-Science Reviews, 2017, 171: 28-43.
doi: 10.1016/j.earscirev.2017.05.006
|
[16] |
Li X R, Kong D S, Tan H J, et al. Changes in soil and vegetation following stabilisation of dunes in the southeastern fringe of the Tengger Desert, China[J]. Plant and Soil, 2007, 300: 221-231.
doi: 10.1007/s11104-007-9407-1
|
[17] |
Lan S B, Wu L, Zhang D L, et al. Assessing level of development and successional stages in biological soil crusts with biological indicators[J]. Microbial Ecology, 2013, 66: 394-403.
doi: 10.1007/s00248-013-0191-6
pmid: 23389251
|
[18] |
Sonia Chamizo, Yolanda Cantón, Isabel Miralles, et al. Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems[J]. Soil Biology and Biochemistry, 2012, 49: 96-105.
doi: 10.1016/j.soilbio.2012.02.017
|
[19] |
Zhang B C, Kong W D, Wu N, et al. Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, northern China[J]. Journal of Basic Microbiology, 2016, 56: 670-679
doi: 10.1002/jobm.201500751
pmid: 26947139
|
[20] |
Garcia-Pichel F, Loza V, Marusenko Y, et al. Temperature drives the continental-scale distribution of key microbes in topsoil communities[J]. Science, 2013, 340: 1574-1577.
doi: 10.1126/science.1236404
pmid: 23812714
|
[21] |
Muñoz-Martín MÁ, Becerra-Absalón I, Perona E, et al. Cyanobacterial biocrust diversity in Mediterranean ecosystems along a latitudinal and climatic gradient[J]. New Phytologist, 2019, 221: 123-141.
doi: 10.1111/nph.15355
pmid: 30047599
|
[22] |
Rajeev L, Rocha U N, Klitgord N, et al. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust[J]. The ISME Journal, 2013, 7: 2178-2191.
doi: 10.1038/ismej.2013.83
|