干旱区研究 ›› 2021, Vol. 38 ›› Issue (3): 618-628.doi: 10.13866/j.azr.2021.03.04
收稿日期:
2020-07-29
修回日期:
2020-09-16
出版日期:
2021-05-15
发布日期:
2021-06-17
通讯作者:
赵文吉
作者简介:
陶静(1997-),女,硕士研究生,主要从事资源环境遥感研究. E-mail: 基金资助:
TAO Jing1(),ZHAO Wenji1(),WANG Xu2,XUE Jin3
Received:
2020-07-29
Revised:
2020-09-16
Online:
2021-05-15
Published:
2021-06-17
Contact:
Wenji ZHAO
摘要:
基于多源、多期遥感影像与DEM提取的冰湖数据,分析了念青唐古拉山西段1991—2017年冰湖不同维度的分布变化,在此基础上研究了冰湖数量、面积变化与气温、降水变化的关系。结果表明:(1) 近年来,研究区的冰湖数量与面积均呈上升趋势,冰湖数量增加161个,面积增加1.185 km2。其中,1991—2006年平稳增长,2006—2017年大幅增长。(2) 冰湖面积与数量在中高海拔范围内均呈增长趋势。新增冰湖主要分布在海拔5400~5700 m,冰湖数量占整体数量的72.41%。(3) 分布在不同朝向冰湖的增长速率不同。西南向冰湖增长较为迅速,朝北向冰湖增长相对缓慢。(4) 气温上升引起的冰川消融是冰湖生长的间接因素,降水是冰湖生长的重要因素。面积小的冰湖对气候的响应更灵敏,变化更显著,面积大的冰湖,变化幅度小,表明冰湖的动态变化与气候变化紧密相关。通过探究念青唐古拉山西段冰湖变化对冰湖溃决灾害的预测具有重要的指示意义。
陶静,赵文吉,王旭,薛进. 念青唐古拉山西段冰湖时空变化分析[J]. 干旱区研究, 2021, 38(3): 618-628.
TAO Jing,ZHAO Wenji,WANG Xu,XUE Jin. Spatial changes of the glacial lakes in the western Nyainqentanglha Range[J]. Arid Zone Research, 2021, 38(3): 618-628.
表1
研究区遥感数据"
传感器 | 成像时间 | 轨道参数 | 平均云量/% | 分辨率(全色/多光谱)/m | 用途 |
---|---|---|---|---|---|
Landsat 4/5 TM | 1991-09-15 | 138/039 | 7 | 30/120 | 冰湖提取 |
Landsat 4/5 TM | 1996-10-13 | 138/039 | 4 | 30/120 | 冰湖提取 |
Landsat 7 ETM+ | 2001-11-04 | 138/039 | 3 | 15/30 | 冰湖提取 |
Landsat 5 TM | 2011-10-07 | 138/039 | 4 | 30/120 | 冰湖提取 |
Landsat 7 ETM+ | 2010-09-26 | 138/039 | 38.12 | 15/30 | 参考数据 |
Landsat 7 ETM+ | 2012-10-17 | 138/039 | 30.3 | 15/30 | 参考数据 |
Landsat 8 OLI | 2017-10-07 | 138/039 | 5.58 | 15/30 | 冰湖提取 |
Landsat 8 OLI | 2017-10-23 | 138/039 | 2.67 | 15/30 | 参考数据 |
Google Earth | 2017-10-09 | - | - | 4 | 参考数据 |
表3
1991—2017年不同朝向冰湖数量与面积变化"
朝向 | 1991年 | 1996年 | 2001年 | 2006年 | 2011年 | 2017年 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
面积 /km2 | 数量/个 | 面积 /km2 | 数量/个 | 面积 /km2 | 数量/个 | 面积 /km2 | 数量/个 | 面积 /km2 | 数量/个 | 面积 /km2 | 数量/个 | ||||||
北 | 0.001 | 1 | 0.005 | 3 | 0 | 0 | 0.005 | 4 | 0.005 | 3 | 0.009 | 6 | |||||
东北 | 0.47 | 19 | 0.0203 | 7 | 0.047 | 13 | 0.062 | 16 | 0.04 | 12 | 0.056 | 13 | |||||
东 | 1.232 | 37 | 1.48 | 19 | 1.496 | 27 | 1.358 | 36 | 1.113 | 24 | 1.601 | 27 | |||||
东南 | 1.203 | 55 | 0.604 | 44 | 0.846 | 54 | 1.268 | 63 | 0.928 | 48 | 0.442 | 55 | |||||
南 | 1.928 | 69 | 2.556 | 105 | 2.903 | 117 | 2.861 | 108 | 2.721 | 123 | 3.007 | 157 | |||||
西南 | 0.386 | 18 | 0.885 | 51 | 0.539 | 45 | 0.361 | 38 | 1.243 | 68 | 1.111 | 68 | |||||
西 | 0.055 | 12 | 0.09 | 17 | 0.038 | 9 | 0.08 | 16 | 0.172 | 35 | 0.178 | 35 | |||||
西北 | 0.021 | 8 | 0.035 | 7 | 0.044 | 8 | 0.026 | 10 | 0.053 | 9 | 0.079 | 19 |
表4
1991—2017年念青唐古拉山西段不同面积规模冰湖变化"
冰湖规模/km2 | 1991年 | 1996年 | 2001年 | 2006年 | 2011年 | 2017年 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
数量/个 | 面积 /km2 | 数量/个 | 面积 /km2 | 数量/个 | 面积 /km2 | 数量/个 | 面积 /km2 | 数量/个 | 面积 /km2 | 数量/个 | 面积 /km2 | ||||||
<0.01 | 117 | 0.532 | 144 | 0.693 | 161 | 0.814 | 183 | 0.723 | 209 | 0.901 | 255 | 0.981 | |||||
0.01~0.05 | 75 | 1.611 | 81 | 1.79 | 82 | 1.8334 | 79 | 1.881 | 81 | 1.857 | 97 | 2.244 | |||||
0.05~0.10 | 13 | 0.864 | 16 | 1.127 | 19 | 1.318 | 15 | 1.042 | 20 | 1.347 | 15 | 1.037 | |||||
0.10~0.2 | 12 | 1.792 | 8 | 1.125 | 8 | 1.251 | 10 | 1.381 | 10 | 1.555 | 11 | 1.636 | |||||
>0.2 | 2 | 0.497 | 4 | 0.939 | 3 | 0.696 | 4 | 0.994 | 2 | 0.615 | 2 | 0.584 |
[1] |
Benn D I, Wiseman S, Hands K A. Growth and drainage of supraglacial lakes on debrismantled Ngozumpa Glacier, Khumbu Himal, Nepal[J]. Journal of Glaciology, 2001,47(159):626-638.
doi: 10.3189/172756501781831729 |
[2] | 张国庆, 王敬涛. 第三极冰湖变化: 全球气候变暖的指示器[N]. 中国气象报, 2015-07-09. |
[ Zhang Guoqing, Wang Jingtao. Changes in the third polar ice lake: An indicator of global warming[N]. China Meteorological News, 2015-7-9.] | |
[3] | 施雅风, 刘时银. 中国冰川对21世纪全球变暖响应的预估[J]. 科学通报, 2000,51(4):434-438. |
[ Shi Yafeng, Liu Shiyin. Prediction of the response of Chinese glaciers to global warming in the 21st century[J]. Chinese Science Bulletin, 2000,51(4):434-438. ] | |
[4] | 商沙沙, 廉丽姝, 马婷, 等. 近54a中国西北地区气温和降水的时空变化特征[J]. 干旱区研究, 2018,35(1):68-76. |
[ Shang Shasha, Lian Lishu, Ma Ting, et al. Spatiotemporal variation of temperature and precipitation in Northwest China in recent 54 Years[J]. Arid Zone Research, 2018,35(1):68-76. ] | |
[5] | 杨景春, 李有利. 地貌学原理[M]. 北京: 北京大学出版社, 2001. |
[ Yang Jingchun, Li Youli. Principles of Geomorphology[M]. Beijing: Peking University Press, 2001. ] | |
[6] |
Allen S K, Linsbauer A, Randhawa S S, et al. Glacial lake outburst flood risk in Himachal Pradesh, India: An integrative and anticipatory approach considering current and future threats[J]. Natural Hazards, 2016,84(3):1741-1763.
doi: 10.1007/s11069-016-2511-x |
[7] | 姚晓军, 刘时银, 孙美平, 等. 20世纪以来西藏冰湖溃决灾害事件梳理[J]. 自然资源学报, 2014,29(8):1377-1390. |
[ Yao Xiaojun, Liu Shiyin, Sun Meiping, et al. Study on the Glacial lake outburst flood events in Tibet since the 20th century[J]. Journal of Natural Resources, 2014,29(8):1377-1390. ] | |
[8] | 王坤鑫, 张寅生, 张腾, 等. 1979—2017年青藏高原色林错流域气候变化分析[J]. 干旱区研究, 2020,37(3):652-662. |
[ Wang Kunxin, Zhang Yinsheng, Zhang Teng, et al. Analysis of climate change in the Selin Co Basin,Tibetan Plateau,from 1979 to 2017[J]. Arid Zone Research, 2020,37(3):652-662. ] | |
[9] | Mool P K, Wangda D, Bajracharya S R, et al. Inventory of Glaciers, Glacial Lakes and Glacial Lake Outburst Floods. Monitoring and Early Warning Systems in the Hindu Kush-Himalayan Region: Bhutan[M]. Kathmanddu, Nelal: International Center for Integrated Mountain Development, 2001. |
[10] | Ageta Y, Iwata S, Yabuki H, et al. Expansion of glacier lakes in recent decades in the Bhutan Himalayas[J]. Debris Covered Glaciers, IAHS Publ, 2000,264:165-175. |
[11] | 李林, 边巴次仁, 赵炜, 等. 西藏喜马拉雅山脉中段冰湖变化与溃决特征分析: 以桑旺错和什磨错为例[J]. 冰川冻土, 2019,41(5):1036-1043. |
[ Li Lin, Bianba Ciren, Zhao Wei, et al. Analysis of change and outburst feature of glacial lake in the middle Himalayas of Tibet: Take Sangwang Co and Shimo Co as examples[J]. Journal of Glaciology and Geocryology, 2019,41(5):1036-1043. ] | |
[12] | 王欣, 刘时银, 姚晓军, 等. 我国喜马拉雅山区冰湖遥感调查与编目[J]. 地理学报, 2010,65(1):29-36. |
[ Wang Xin, Liu Shiyin, Yao Xiaojun, et al. Glacier lake investigation and inventory in the Chinese Himalayas based on the remote sensing Data[J]. Acta Geographica Sinica, 2010,65(1):29-36. ] | |
[13] | 李达, 上官冬辉, 黄维东. 天山麦兹巴赫冰川湖1998—2017年面积变化相关研究[J]. 冰川冻土, 2019,42(4):1126-1134. |
[ Li Da, Shangguan Donghui, Huang Weidong. Study on the area change of Lake Merzbacher in the Tianshan Mountains during 1998-2017[J]. Journal of Glaciology and Geocryology, 2019,42(4):1126-1134. ] | |
[14] | 王欣, 吴坤鹏, 蒋亮虹, 等. 近20年天山地区冰湖变化特征[J]. 地理学报, 2013,68(7):983-993. |
[ Wang Xin, Wu Kunpeng, Jiang Lianghong, et al. Wide expansion of glacial lakes in Tianshan Mountains during 1990-2010[J]. Acta Geographica Sinica, 2013,68(7):983-993. ] | |
[15] | 王宇, 李均力, 李长春, 等. 50a来别珍套山冰湖的时空变化及其对气候的响应[J]. 干旱区研究, 2016,33(2):299-307. |
[ Wang Yu, Li Junli, Li Changchun, et al. Spatiotemporal change of glacial lakes in the Biezhentao Mountain and its response to climate change[J]. Arid Zone Research, 2016,33(2):299-307. ] | |
[16] | 廖淑芬, 王欣, 谢自楚, 等. 近40a来中国喜马拉雅山不同流域冰湖演化特征[J]. 自然资源学报, 2015,30(2):293-303. |
[ Liao Shufen, Wang Xin, Xie Zichu, et al. Changes of glacial lakes in different watersheds of Chinese Himalaya during the last four decades[J]. Journal of Natural Resources, 2015,30(2):293-303. ] | |
[17] |
Benn D I, Bolch T, Hands K, et al. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards[J]. Earth Science Reviews, 2012,114(1-2):156-174.
doi: 10.1016/j.earscirev.2012.03.008 |
[18] | 宫鹏, 姚晓军, 孙美平, 等. 1967—2014年科西河流域冰湖时空变化[J]. 生态学报, 2017,37(24):8422-8432. |
[ Gong Peng, Yao Xiaojun, Sun Meiping, et al. Spatial-temporal variations of glacial lakes in the Koshi River basin from 1967 to 2014[J]. Acta Ecologica Sinica, 2017,37(24):8422-8432. ] | |
[19] | 赵轩茹, 舒梅海, 王欣, 等. 基于遥感的1990—2015年阿尔泰山区冰湖变化特征[J]. 湖南科技大学学报(自然科学版), 2019,34(3):96-102. |
[ Zhao Xuanru, Shu Meihai, Wang Xin, et al. Change characteristics of glacial lake in Altai Mountains during 1990-2015 based on remote sensning data[J]. Journal of Hunan University of Science and Technology (Natural Science Edition), 2019,34(3):96-102. ] | |
[20] | 李成秀, 杨太保, 田洪阵. 近40年来西昆仑山冰川及冰湖变化与气候因素[J]. 山地学报, 2015,33(2):157-165. |
[ Li Chengxiu, Yang Taibao, Tian Hongzhen. Variation of western Kunlun Mountain glaciers monitored by remote sensing during 1976-2010[J]. Mountain Research, 2015,33(2):157-165. ] | |
[21] | 王旭, 周爱国, 孙自永, 等. 1972—2009年念青唐古拉山西段冰湖分布及其变化特征[J]. 地质科技情报, 2012,31(4):91-97. |
[ Wang Xu, Zhou Aiguo, Sun Ziyong, et al. Distribution and change characteristics of glacial lakes in western Nyainqentanglha range during 1972-2009[J]. Geological Science and Technology Information, 2012,31(4):91-97. ] | |
[22] | 赵航. 基于Landsat-8遥感影像的高亚洲地区冰湖提取方法研究[D]. 北京: 中国科学院大学, 2018. |
[ Zhao Hang. The Research of Glacial Lake Extraction based on Landsat-8 OLI Imagery in High Mountain Region of Asian[D]. Beijing: University of Chinese Academy of Sciences, 2018. ] | |
[23] | 李晓雪. 基于人工神经网络的西藏黄湖危险性评价[C]// 中国水利学会2016学术年会论文集(上册). 中国水利学会, 2016: 7. |
[ Li Xiaoxue. Risk Assessment of Yellow Lake in Tibet Based on Artificial Neural Network[C]// Papers for 2016 Annual Conference (Part I). Chinese Hydraulic Engineering Society, 2016: 7. ] | |
[24] | 赵航, 陈方, 张美美. 基于改进C-V模型的冰湖轮廓提取方法研究[J]. 遥感技术与应用, 2018,33(1):177-184. |
[ Zhao Hang, Chen Fang, Zhang Meimei, Research of glacial lake contur extraction method based on improved C-V model[J]. Remote Sensing Technology and Application, 2018,33(1):177-184. ] | |
[25] | 骆剑承, 盛永伟, 沈占锋, 等. 分步迭代的多光谱遥感水体信息高精度自动提取[J]. 遥感学报, 2009,13(4):604-615. |
[ Luo Jiancheng, Sheng Yongwei, Shen Zhanfeng, et al. Automatic and high-precise extraction for water information from multispectral images with the step-by-step iterative transformation mechanism[J]. Journal of Remote Sensing, 2009,13(4):604-615. ] | |
[26] | 李均力, 盛永伟, 骆剑承. 喜马拉雅山地区冰湖信息的遥感自动化提取[J]. 遥感学报, 2011,15(1):29-43. |
[ Li Junli, Sheng Yongwei, Luo Jiancheng. Automatic extraction of Himalayan Glacial Lakes with remote sensing[J]. Journal of Remote Sensing, 2011,15(1):29-43. ] | |
[27] |
Miles K E, Willis I C, Benedek C L, et al. Toward monitoring surface and subsurface lakes on the Greenland ice sheet using Sentinel-1 SAR and Landsat-8 OLI imagery[J]. Frontiers in Earth Science, 2017,5:58. Doi: 10. 3389/feart. 2017. 00058.
doi: 10. 3389/feart. 2017. 00058 |
[28] |
Wangchuk S, Bolch T, Zawadzki J. Towards automated mapping and monitoring of potentially dangerous glacial lakes in Bhutan Himalaya using Sentinel-1 Synthetic Aperture Radar data[J]. International Journal of Remote Sensing, 2019,40(12):4642-4667.
doi: 10.1080/01431161.2019.1569789 |
[29] |
Paul F, Andreas Kääb, Maisch M, et al. The new remote-sensing-derived Swiss glacier inventory: II. First results[J]. Annals of Glaciology, 2002,34(1):355-361.
doi: 10.3189/172756402781817941 |
[30] |
Hanshaw M N, Bookhagen B. Glacial areas, lake areas, and snow lines from 1975 to 2012: Status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru[J]. The Cryosphere, 2014,8(2):359-376.
doi: 10.5194/tc-8-359-2014 |
[31] |
姚晓军, 刘时银, 韩磊, 等. 冰湖的界定与分类体系——面向冰湖编目和冰湖灾害研究[J]. 地理学报, 2017,72(7):1173-1183.
doi: 10.11821/dlxb201707004 |
[ Yao Xiaojun, Liu Shiyin, Han Lei, et al. Definition and classification systems of glacial lake for inventory and hazards study[J]. Acta Geographica Sinica, 2017,72(7):1173-1183. ]
doi: 10.11821/dlxb201707004 |
|
[32] | 王建. 现代自然地理学[M]. 北京: 北京师范大学出版社, 2001. |
[ Wang Jian. Modern Physical Geography[M]. Beijing: Beijing Normal University Publishing Group, 2001. ] | |
[33] |
Li G, Lin H. Recent decadal glacier mass balances over the Western Nyainqentanglha Mountains and the increase in their melting contribution to Nam Co Lake measured by differential bistatic SAR interferometry[J]. Global and Planetary Change, 2017,149:177-190.
doi: 10.1016/j.gloplacha.2016.12.018 |
[34] | 王欣, 丁永建, 张勇. 冰川融水对山地冰冻圈冰湖水文效应的影响[J]. 湖泊科学, 2019,31(3):609-620. |
[ Wang Xin, Ding Yongjian, Zhang Yong. The influence of glacier meltwater on the hydrological effect of glacial lakes in Mountain Cryospher[J]. Journal of Lake Sciences, 2019,31(3):609-620. ] | |
[35] | 王旭, 周爱国, Siegert Florian, 等. 念青唐古拉山西段冰川1977—2010年时空变化[J]. 地球科学, 2012,37(5):1082-1092. |
[ Wang Xu, Zhou Aiguo, Siegert Florian, et al. Spatiotemporal changes of glaciers in the western section of the Tangnula Mountains in Nianqing from 1977 to 2010[J]. Earth Science, 2012,37(5):1082-1092. ] | |
[36] |
Wu K, Liu S, Guo W, et al. Glacier change in the western Nyainqentanglha Range, Tibetan Plateau using historical maps and Landsat imagery: 1970-2014[J]. Journal of Mountain Science, 2016,13(8):1358-1374.
doi: 10.1007/s11629-016-3997-0 |
[1] | 赵雨琪, 魏天兴. 1990—2020年黄土高原典型县域植被覆盖变化及影响因素[J]. 干旱区研究, 2024, 41(1): 147-156. |
[2] | 胡广录,陶虎,焦娇,白元儒,陈海志,麻进. 黑河中游正义峡径流变化趋势及归因分析[J]. 干旱区研究, 2023, 40(9): 1414-1424. |
[3] | 马瑶瑶, 史培军, 徐伟, 张钢锋. 干旱区水电站建设运营生态环境影响遥感监测[J]. 干旱区研究, 2023, 40(9): 1498-1508. |
[4] | 周小东, 常顺利, 王冠正, 张毓涛, 喻树龙, 张同文. 天山北坡中段雪岭云杉径向生长对气候变化的响应[J]. 干旱区研究, 2023, 40(8): 1215-1228. |
[5] | 孟乘枫, 仲涛, 郑江华, 王南, 刘泽轩, 任祥源. 昆仑山冰湖分布时空特征及驱动力[J]. 干旱区研究, 2023, 40(7): 1094-1106. |
[6] | 刘笑, 郭鹏, 祁佳峰, 杜文玲, 张茹倩, 张坤. 基于MRSEI模型的阿勒泰市生态环境时空变化及驱动力分析[J]. 干旱区研究, 2023, 40(6): 1014-1026. |
[7] | 赵艳芬, 潘伯荣. 气候变化情景下革苞菊属在中国的潜在地理分布[J]. 干旱区研究, 2023, 40(6): 949-957. |
[8] | 姚春艳, 刘洪鹄, 刘竞. 长江源区1980—2020年水沙变化规律[J]. 干旱区研究, 2023, 40(5): 726-736. |
[9] | 张雨斯,包玉海,贺忠华. 1990—2021年内蒙古遥感生态环境质量变化及趋势分析——以呼伦贝尔市陈巴尔虎旗为例[J]. 干旱区研究, 2023, 40(2): 326-336. |
[10] | 戴君, 胡海珠, 毛晓敏, 张霁. 基于CMIP6多模式预估数据的石羊河流域未来气候变化趋势分析[J]. 干旱区研究, 2023, 40(10): 1547-1562. |
[11] | 姚岱均, 刘康, 惠俞翔, 王凯欣. 天水麦积山油松树轮宽度对气候变化的响应及其机制[J]. 干旱区研究, 2023, 40(1): 19-29. |
[12] | 陈红光, 孟凡浩, 萨楚拉, 罗敏, 王牧兰, 刘桂香. 北方牧区草原内陆河流域径流演变特征及其驱动因素分析[J]. 干旱区研究, 2023, 40(1): 39-50. |
[13] | 张昊琛,萨楚拉,孟凡浩,罗敏,王牧兰,高红豆. 内蒙古地表冻融指数动态变化与驱动因素分析[J]. 干旱区研究, 2022, 39(6): 1996-2008. |
[14] | 王靖文,唐志光,邓刚,胡国杰,桑国庆. 1991—2021年天山融雪末期雪线高度遥感监测研究[J]. 干旱区研究, 2022, 39(5): 1385-1397. |
[15] | 郭伊利,李书恒,王嘉川,韩宜洁. 芦芽山华北落叶松早晚材径向生长对气候变化响应的分离效应[J]. 干旱区研究, 2022, 39(5): 1449-1463. |
|