干旱区研究 ›› 2021, Vol. 38 ›› Issue (1): 76-86.doi: 10.13866/j.azr.2021.01.09 cstr: 32277.14.AZR.20210109
收稿日期:2020-05-07
修回日期:2020-08-03
出版日期:2021-01-15
发布日期:2021-03-05
作者简介:汪海娇(1993- ),女,硕士研究生,研究方向为荒漠化防治. E-mail: 基金资助:
WANG Haijiao1(
),TIAN Lihui1,2(
),ZHANG Dengshan1,WANG Qiaoyu1
Received:2020-05-07
Revised:2020-08-03
Published:2021-01-15
Online:2021-03-05
摘要:
土壤水分是沙地植被格局和过程改变的主要驱动力,也是干旱半干旱区植物生长最大的限制因子。沙漠地区的土壤水分表现出明显的空间异质性。以高寒半干旱沙地青海湖东沙地为研究区,以栽植人工固沙植物(小叶杨、樟子松、沙棘和乌柳)的沙丘和自然固定沙丘(沙蒿为优势种)作为研究样地,探讨不同固沙植物影响下的沙丘不同地貌部位土壤水分变化特征。结果表明:(1) 土壤水分的季节变化受降水、植被蒸腾作用和地表蒸发的共同影响,不同物种的分布模式具有差异性,但都表现为7月的土壤含水量最高。(2) 同一植物在不同地貌部位的土壤含水量具有差异性,小叶杨在迎风坡最高,樟子松、沙棘和乌柳在背风坡最高,而沙蒿在丘顶最高,但只有乌柳的土壤含水量在沙丘地貌部位间的差异明显(P<0.05)。不同植物在同一地貌部位的土壤含水量也具有差异性,迎风坡樟子松的土壤含水量最小,只有1.81%,而沙蒿的土壤含水量能达到3.48%。丘顶处乌柳的土壤含水量仅为1.82%,而沙蒿可达3.58%。背风坡处的土壤含水量相差不大,乌柳最大为3.41%。(3) 土壤水分随着土层深度的变化模式不同,土壤含水量整体表现为10~20 cm处最高。不同植物的土壤水分的垂直分布具有差异性,小叶杨和樟子松下方的土壤含水量随着土层深度的增加而降低,沙棘和沙蒿表现为120 cm土层深度内无明显变化,而乌柳下方的土壤含水量随着土层深度的变化在各地貌部位不同,具体表现为迎风坡无明显变化、丘顶降低和背风坡增加的趋势。土壤水分在高寒半干旱沙地不同植被恢复措施下的分布除受到降水、土壤分布、物种类型、植物根系分布的影响之外,还与沙丘微地貌形态具有一定的相关性。
汪海娇,田丽慧,张登山,王俏雨. 青海湖东沙地不同植被恢复措施下土壤水分变化特征[J]. 干旱区研究, 2021, 38(1): 76-86.
WANG Haijiao,TIAN Lihui,ZHANG Dengshan,WANG Qiaoyu. Variation of soil moisture content in vegetation restoration area of sandy land at east shore of Qinghai Lake[J]. Arid Zone Research, 2021, 38(1): 76-86.
表2
试验样地植被特征(平均值±标准误)"
| 样地 | 部位 | 植物 | 高度/m | 南北长/cm | 东西长/cm | 盖度/% | 丰富度 |
|---|---|---|---|---|---|---|---|
| XYY-SJ | 迎风坡 | 小叶杨(乔木) | 146.43±96.57 | 103.79±88.81 | 98.79±81.43 | 23.59±2.70 | 8 |
| 丘顶 | 131.87±58.96 | 93.60±43.88 | 86.80±42.38 | 14.60±1.23 | 7 | ||
| 背风坡 | 197.31±130.62 | 118.63±73.20 | 108.69±67.74 | 27.46±1.89 | 7 | ||
| ZZS | 迎风坡 | 樟子松(乔木) | 121.63±36.39 | 88.31±29.48 | 90.38±23.57 | 54.06±1.81 | 4 |
| 丘顶 | 122.33±30.36 | 84.11±18.81 | 78.78±18.19 | 24.39±1.07 | 5 | ||
| 背风坡 | 103.12±29.60 | 73.71±19.22 | 74.82±18.28 | 39.59±1.12 | 4 | ||
| WL | 迎风坡 | 乌柳(半乔木) | 155.50±56.97 | 123.25±54.96 | 115.5±52.67 | 51.81±4.70 | 6 |
| 丘顶 | 210.83±25.77 | 168.67±13.44 | 126.67±29.79 | 51.41±2.19 | 6 | ||
| 背风坡 | 186.57±48.50 | 147.57±40.26 | 112.57±51.42 | 49.82±3.93 | 8 | ||
| XYY-SJ | 迎风坡 | 沙棘(灌木) | 41.44±14.45 | 61.88±26.01 | 73.06±28.70 | 8.12±0.44 | 8 |
| 丘顶 | 69.49±26.36 | 99.45±37.91 | 96.26±36.02 | 49.70±0.69 | 7 | ||
| 背风坡 | 61.91±34.09 | 83.11±34.30 | 79.93±27.36 | 32.23±0.49 | 7 | ||
| SH | 迎风坡 | 沙蒿(半灌木) | 25.82±9.25 | 40.20±21.93 | 37.39±20.98 | 33.32±0.95 | 9 |
| 丘顶 | 32.88±12.04 | 43.84±18.37 | 41.00±15.31 | 25.70±0.59 | 6 | ||
| 背风坡 | 26.77±9.59 | 49.00±19.42 | 52.90±19.21 | 22.90±0.90 | 5 |
表3
固沙植物在不同地貌部位土壤含水量的差异性特征"
| 植被类型 | 沙丘地貌部位 | 土壤质量含水量/% |
|---|---|---|
| 小叶杨 | 迎风坡 | 2.71±0.16aA |
| 丘顶 | 2.41±0.15aA | |
| 背风坡 | 2.58±0.14aA | |
| 樟子松 | 迎风坡 | 1.81±0.20aB |
| 丘顶 | 2.33±0.30aA | |
| 背风坡 | 2.42±0.24aA | |
| 乌柳 | 迎风坡 | 2.78±0.18aA |
| 丘顶 | 1.82±0.32bB | |
| 背风坡 | 3.41±0.38aB | |
| 沙棘 | 迎风坡 | 2.46±0.23aA |
| 丘顶 | 2.55±0.25aA | |
| 背风坡 | 2.97±0.29aA | |
| 沙蒿 | 迎风坡 | 3.48±0.28aC |
| 丘顶 | 3.53±0.24aC | |
| 背风坡 | 3.09±0.31aA |
| [1] | Sperry J S, Hacke U G. Desert shrub water relations with respect to soil characteristics and plant functional type[J]. Functional Ecology, 2002,16:367-378. |
| [2] | D'Odorico P Bhattachan A Davis K F, et al. Global desertification: Drivers and feedbacks[J]. Advance Water Resources, 2013,51:326-344. |
| [3] | Li X Y, Yang D W, Zheng C M, et al. Ecohydrology, 2017, DOI: 10.1007/978-981-10-1884-8_18. |
| [4] |
Deng J, Li J, Deng G, et al. Fractal scaling of particle-size distribution and associations with soil properties of Mongolian pine plantations in the Mu Us Desert, China[J]. Scientific Reports, 2017,7(1): doi: 10.1038/s41598-017-06709-8.
doi: 10.1038/s41598-017-18485-6 pmid: 29273789 |
| [5] | Ehleringer J R, Dawson T E. Water uptake by plants: Perspectives from stable isotope composition[J]. Plant Cell and Environment, 1992,15:1073-1082. |
| [6] | 李小雁. 干旱地区土壤-植被-水文、耦合、响应与适应机制[J]. 中国科学: 地球科学, 2011,41(12):1721-1730. |
| [ Li Xiaoyan. Mechanism of coupling, response and adaptation between soil, vegetation and hydrology in arid and semiarid regions[J]. Scientia Sinica Terrae, 2011,41(12):1721-1730. ] | |
| [7] | 李新荣, 赵洋, 回嵘, 等. 中国干旱区恢复生态学研究进展及趋势评述[J]. 地理科学进展, 2014,33(11):1435-1443. |
| [ Li Xinrong, Zhao Yang, Hui Rong, et al. Progress and trend of development of restoration ecology research in the arid regions of China[J]. Progress in Geography, 2014,33(11):1435-1443. ] | |
| [8] | Schlesinger W H, Raikes J A, Hartley A E, et al. On the spatial pattern of soil nutrients in desert ecosystems[J]. Ecology, 1996,77:364-374. |
| [9] | Li X R, Zhang Z S, Tan H J, et al. Ecological restoration and recovery in the wind-blown sand hazard areas of Northern China: Relationship between soil water and carrying capacity for vegetation in the Tengger Desert[J]. Science China: Life Science, 2014,57(5):539-548. |
| [10] | 李新荣, 马凤云, 龙立群, 等. 沙坡头地区固沙植被土壤水分动态研究[J]. 中国沙漠, 2001,21(3):217-222. |
| [ Li Xinrong, Ma Fengyun, Long Liqun, et al. Soil water dynamics under sand-fixing vegetation in Shapotou area[J]. Journal of Desert Research, 2001,21(3):217-222. ] | |
| [11] | 王翔宇, 张进虎, 丁国栋, 等. 沙地土壤水分特征及水分时空动态分析[J]. 水土保持学报, 2008,22(6):222-227. |
| [ Wang Xiangyu, Zhang Jinhu, Ding Guodong, et al. Study on the temporal and spacial change of soil water content and soil moisture characteristics of sandy land[J]. Journal of Soil and Water Conservation, 2008,22(6):222-227. ] | |
| [12] | 李振山, 王怡, 贺丽敏. 干旱区沙质草地植被覆盖变化模拟 Ⅰ. 模型[J]. 中国沙漠, 2008,28(3):417-422. |
| [ Li Zhenshan, Wang Yi, He Limin. Simulation method of vegetation coverage in arid sandy grassland I. Models[J]. Journal of Desert Research, 2008,28(3):417-422. ] | |
| [13] |
Pan Y X, Wang X P, Jia R L, et al. Spatial variability of surfacce soil moisture content in a revegetated desert area in Shapotou, Northern China[J]. Journal of Arid Environments, 2008,72:1675-1683.
doi: 10.1016/j.jaridenv.2008.03.010 |
| [14] | 朱玉伟, 陈启民, 刘茂秀, 等. 古尔班通古特沙漠南缘沙丘水分的时空分布特征[J]. 草业科学, 2008,25(12):6-11. |
| [ Zhu Yuwei, Chen Qimin, Liu Maoxiu, et al. Spatiotemporal distribution of moisture content in sand dunes of the unirrigated forestation along the southern marginal zone of Gurbantunggut Desert[J]. Pratacultural Science, 2008,25(12):6-11. ] | |
| [15] | 鲁瑞洁, 唐清亮, 桑艳礼, 等. 青海湖克土沙区不同类型沙丘土壤水分的动态变化[J]. 水土保持研究, 2012,19(2):111-115. |
| [ Lu Ruijie, Tang Qingliang, Sang Yanli, et al. Dynamic changes of soil moisture in different dunes of Ketu sand land in Qinghai Lake basin[J]. Research of Soil and Water Conservation, 2012,19(2):111-115. ] | |
| [16] | 王俏雨, 田丽慧, 张登山, 等. 高寒沙地柠条群落土壤水分空间分布特征研究[J]. 青海大学学报, 2019,37(3):8-15. |
| [ Wang Qiaoyu, Tian Lihui, Zhang Dengshan, et al. Spatial variability of soil water content of Caragana korshinskii communities in alpine sandy land[J]. Journal of Qinghai University, 2019,37(3):8-15. ] | |
| [17] | 李少华, 张立恒, 王学全, 等. 高寒灌木固沙区土壤性状与植被生长特征的相关分析[J]. 干旱区研究, 2017,34(6):1331-1337. |
| [ Li Shaohua, Zhang Liheng, Wang Xuequan, et al. Soil properties and shrub growth in an alpine sandy area[J]. Arid Zone Research, 2017,34(6):1331-1337. ] | |
| [18] | 中国科学院兰州分院. 青海湖近代环境的演化和预测[M]. 北京: 科学出版社, 1994: 2. |
| [ Lanzhou Branch Chinese Academy of Sciences. Evolution and Prediction of Environment in Qinghai Lake [M]. Beijing: Science Press, 1994: 2. ] | |
| [19] | 张登山, 高尚玉, 石蒙沂. 青海高原土地沙漠化及其防治[M]. 北京: 科学出版社, 2009: 10. |
| [ Zhang Dengshan, Gao Shangyu, Shi Mengyi. Desertification and Its Control in Qinghai Plateau[M]. Beijing: Science Press, 2009: 10. ] | |
| [20] | 张登山, 石昊, 魏殿生, 等. 青海湖流域人工治沙措施防风固沙效益初步研究[J]. 地球环境学报, 2010,3(1):239-242. |
| [ Zhang Dengshan, Shi Hao, Wei Diansheng, et al. Effects of artificial measures on wind-breaking and sand-fixation in Qinghai Lake drainage area[J]. Journal of Earth Environment, 2010,3(1):239-242. ] | |
| [21] |
吴汪洋, 张登山, 田丽慧, 等. 近10年青海湖东沙地人工植被群落特征研究[J]. 生态学报, 2019,39(6):2109-2121.
doi: 10.5846/stxb201712292353 |
|
[ Wu Wangyang, Zhang Dengshan, Tian Lihui, et al. Features of artificial plant communities from the east sand region of the Qinghai Lake over the last 10 years[J]. Acta Ecologica Sinica, 2019,39(6):2109-2121. ]
doi: 10.5846/stxb201712292353 |
|
| [22] | 赵以莲, 周国英, 陈桂琛. 青海湖区东部沙地植被及其特征研究[J]. 中国沙漠, 2007,27(5):820-825. |
| [ Zhao Yilian, Zhou Guoying, Chen Guichen. Sandy vegetation and its characteristics in east of Qinghai Lake area[J]. Journal of Desert Research, 2007,27(5):820-825. ] | |
| [23] | 鲁瑞洁, 唐清亮, 魏殿生, 等. 青海湖湖东沙地不同沙丘降雨入渗研究[J]. 中国沙漠, 2013,33(3):797-803. |
| [ Lu Ruijie, Tang Qingliang, Wei Diansheng, et al. Rainwater infiltration at dunes under various rainfall events in sandy land to the east of Qinghai Lake[J]. Journal of Desert Research, 2013,33(3):797-803. ] | |
| [24] | 王正宁, 王新平. 荒漠灌丛树干茎流及其入渗、再分配特征[J]. 中国沙漠, 2010,30(5):1108-1113. |
| [ Wang Zhengning, Wang Xinping. Stemflow of Caragana korshinskii and its infiltration and redistribution in desert environment[J]. Journal of Desert Research, 2010,30(5):1108-1113. ] | |
| [25] | Pan Y X, Wang X P. Factors controlling the spatial variability of surface soil moisture within revegetated-stabilized desert ecosystems of the Tengger Desert, Northern China[J]. Hydrological Processes, 2009,23:1591-1601. |
| [26] | Hawley M E, Jackson T J, McCuen R H. Surface soil moisture variation on small agricultural watersheds[J]. Journal of Hydrology, 1983,62:179-200. |
| [27] | 冯起, 高前兆, 苏培玺, 等. 半湿润地区植被影响下的沙地水分动态[J]. 干旱区研究, 1994,11(4):58-63. |
| [ Feng Qi, Gao Qianzhao, Su Peixi, et al. Study soil water variability of sandy land influencing by vegetation in the semi-humid zone[J]. Arid Zone Research, 1994,11(4):58-63. ] | |
| [28] | 张登山, 田丽慧, 鲁瑞洁, 等. 青海湖湖东沙地风沙沉积物的粒度特征[J]. 干旱区地理, 2013,36(2):203-211. |
| [ Zhang Dengshan, Tian Lihui, Lu Ruijie, et al. Grain-size features of aeolian deposits in the eastern shore of Qinghai Lake[J]. Arid Land Geography, 2013,36(2):203-211. ] | |
| [29] | Richards J H, Caldwell M M. Hydraulic lift: Substantial nocturnal water transport between soil layers by Artemisia tridentata roots[J]. Oecologia, 1987,73(4):486-489. |
| [30] | 石莎, 马风云, 刘立超, 等. 沙坡头地区不同植被结构对沙地土壤水分的影响[J]. 中央民族大学学报(自然科学版), 2004,13(2):137-142. |
| [ Shi Sha, Ma Fengyun, Liu Lichao, et al. The effect on different vegetation structure to soil water contents in Shapoto region[J]. Journal of Minzu University of China (Natural Sciences Edition), 2004,13(2):137-142. ] | |
| [31] | 孜尔蝶·巴合提, 贾国栋, 余新晓, 等. 基于稳定同位素分析不同退化程度小叶杨水分来源[J]. 应用生态学报, 2020,31(6):1807-1816. |
| [ Zierdie Baheti, Jia Guodong, Yu Xinxiao, et al. Assessing water sources for Populus simonii with different degrees of degradation based on stable isotopes[J]. Chinese Journal of Applied Ecology, 2020,31(6):1807-1816. ] | |
| [32] | Zhou H, Zhao W Z, He Z B, et al. Variation in depth of water uptake for Pinus sylvestris var. mongolica along a precipitation gradient in sandy regions[J]. Journal of Hydrology, 2019,577:1-11. |
| [33] | 于洋, 贾志清, 朱雅娟, 等. 高寒沙地乌柳(Salix cheilophila)林根系分布特征[J]. 中国沙漠, 2014,34(1):67-74. |
| [ Yu Yang, Jia Zhiqing, Zhu Yajuan, et al. Root distribution of Salix cheilophila along a chronosequence in high-cold sandland[J]. Journal of Desert Research, 2014,34(1):67-74. ] | |
| [34] | Wu H W, Li X Y, Jiang Z Y, et al. Contrasting water use pattern of introduced and native plants in an alpine desert ecosystem, Northeast Qinghai-Tibet Plateau, China[J]. Science of the Total Environment, 2016,542:182-191. |
| [35] | 鲁瑞洁, 刘小槺, 李金凤, 等. 青海湖地区典型固沙植物对根下土壤改良作用的初步研究[J]. 水土保持学报, 2015,29(4):177-181. |
| [ Lu Ruijie, Liu Xiaokang, Li Jinfeng, et al. Effects of typical sand-fixing plant on soil improvement in Qinghai Lake[J]. Journal of Soil and Water Conservation, 2015,29(4):177-181. ] | |
| [36] | 张立恒, 李清雪, 王学全, 等. 高寒沙区中间锦鸡儿人工林细根动态及其周转[J]. 干旱区研究, 2020,37(1):212-219. |
| [ Zhang Liheng, Li Qingxue, Wang Xuequan, et al. Biomass dynamics and turnover of fine rcoots of Caragana intermedia plantations in alpine sandy land[J]. Arid Zone Research, 2020,37(1):212-219. ] | |
| [37] | 潘颜霞, 王新平, 苏延桂, 等. 荒漠人工固沙植被区土壤水分的时空变异性[J]. 生态学报, 2009,29(2):993-1000. |
| [ Pan Yanxia, Wang Xinping, Su Yangui, et al. Temporal and spatial variability of surface soil moisture in a re-vegetation desert area in Shapotou[J]. Acta Ecologica Sinica, 2009,29(2):993-1000. ] | |
| [38] | 王博, 段玉玺, 王伟峰, 等. 人工固沙区植被演替过程中土壤水分时空分异特征[J]. 干旱区研究, 2020,37(4):881-889 . |
| [ Wang Bo, Duan Yuxi, Wang Weifeng, et al. Spatial and temporal variability of soil water content during vegetation succession in sand-binding area[J]. Arid Zone Research, 2020,37(4):881-889. ] | |
| [39] | 移小勇, 赵哈林, 李玉霖, 等. 科尔沁沙地不同风沙土的风蚀特征[J]. 水土保持学报, 2006,20(2):10-13, 53. |
| [ Yi Xiaoyong, Zhao Halin, Li Yulin, et al. Wind erosion characteristics of aeolian soils in Horqin sandy land[J]. Journal of Soil and Water Conservation, 20(2):10-13, 53. ] | |
| [40] | 孙姗姗, 刘新平, 魏水莲, 等. 沙地植物幼苗生长对降水和风速变化的响应[J]. 干旱区研究, 2019,36(4):870-877. |
| [ Sun Shanshan, Liu Xinping, Wei Shuilian, et al. Response of plant seedling growth to the changes in precipitation and wind velocity in Horqin sandy land[J]. Arid Zone Research, 2019,36(4):870-877. ] |
| [1] | 谢刚, 王甜甜, 于涛, 董靖玮, 陈世强, 王梦晓, 张圣杰, 张浩铭. 青海湖入湖口水温演变初步研究[J]. 干旱区研究, 2024, 41(9): 1503-1513. |
| [2] | 杨竹青, 王磊, 张雪, 申建香, 张伊婧, 李欣宇, 张波, 牛金帅. 典型固沙植物种子萌发和幼苗生长对土壤水分的响应[J]. 干旱区研究, 2024, 41(5): 830-842. |
| [3] | 胡广录, 刘鹏, 李嘉楠, 陶虎, 周成乾. 黑河中游绿洲边缘三种景观类型土壤水分动态特征及影响因素[J]. 干旱区研究, 2024, 41(4): 550-565. |
| [4] | 张华, 押海廷, 徐存刚. 兰州市南北两山土壤水分遥感反演及植被需水量估算[J]. 干旱区研究, 2024, 41(4): 566-580. |
| [5] | 宋达成, 马全林, 刘世权, 魏林源, 吴昊, 段晓峰, 郭树江. 民勤黏土沙障-人工梭梭林物种多样性及土壤水分变化特征[J]. 干旱区研究, 2024, 41(4): 618-628. |
| [6] | 郭世钰, 张玉欣, 韩辉邦, 周万福, 康晓燕, 张莉燕. 三江源一次降水过程雨滴谱垂直演变特征[J]. 干旱区研究, 2024, 41(3): 353-362. |
| [7] | 李嘉楠, 周成乾, 胡广录, 杨鹏华, 李昊辰. 荒漠-绿洲过渡带典型固沙植物根区土壤大孔隙特征及影响因素[J]. 干旱区研究, 2024, 41(12): 2015-2026. |
| [8] | 李永广, 苑广辉. 青海湖流域不同下垫面类型对地表温度的生物物理影响[J]. 干旱区研究, 2024, 41(1): 24-35. |
| [9] | 李健男, 史海滨, 苗庆丰, 珊丹, 荣浩, 温雅琴. 环境因子对不同种类人工乔木林分蒸腾耗水的影响[J]. 干旱区研究, 2023, 40(8): 1312-1321. |
| [10] | 吉吉佳门, 程一本, 谌玲珑, 万鹏翔, 张祎晖, 杨文斌, 白旭赢, 王涛. 科尔沁沙地樟子松人工林土壤水分动态及其对降雨的响应[J]. 干旱区研究, 2023, 40(5): 756-766. |
| [11] | 薛智暄, 张丽, 王新军, 李永康, 张冠宏, 李沛尧. 古尔班通古特沙漠SMAP土壤水分产品降尺度分析[J]. 干旱区研究, 2023, 40(4): 583-593. |
| [12] | 康利刚, 曹生奎, 曹广超, 杨羽帆, 严莉, 王有财. 青海湖沙柳河流域蒸散发时空变化特征[J]. 干旱区研究, 2023, 40(3): 358-372. |
| [13] | 吴雪晴, 张乐乐, 高黎明, 李炎坤, 刘轩辰. 青海湖流域NPP动态变化及驱动力[J]. 干旱区研究, 2023, 40(11): 1824-1832. |
| [14] | 杨霜奇, 宋乃平, 王兴, 陈晓莹, 常道琴. 荒漠草原灰钙土与风沙土水分时空特征[J]. 干旱区研究, 2023, 40(10): 1625-1636. |
| [15] | 李炎坤,高黎明,张乐乐,吴雪晴,刘轩辰,祁闻. 青海湖流域及周边区域TRMM 3B43降水数据降尺度方法对比分析[J]. 干旱区研究, 2022, 39(6): 1706-1716. |
|
||