干旱区研究 ›› 2021, Vol. 38 ›› Issue (1): 163-177.doi: 10.13866/j.azr.2021.01.18
收稿日期:
2020-04-27
修回日期:
2020-05-24
出版日期:
2021-01-15
发布日期:
2021-03-05
通讯作者:
隆霄
作者简介:
魏倩(1994-),女,硕士研究生,主要从事大气动力学和中尺度数值天气预报研究. E-mail: 基金资助:
WEI Qian1(),LONG Xiao1(),ZHAO Jianhua2,HAN Zifei1,WANG Siyi1
Received:
2020-04-27
Revised:
2020-05-24
Online:
2021-01-15
Published:
2021-03-05
Contact:
Xiao LONG
摘要:
使用耦合化学模块的高分辨率中尺度数值模式WRF-Chem3.4,结合近地层观测资料评估YSU、MYJ、QNSE、MYNN2.5和BouLac共5种边界层参数化方案对2007年3月27日西北地区一次沙尘天气过程模拟效果的影响,结果显示5种边界层参数化方案均可模拟出此次沙尘天气的发展演变过程,其中YSU和BouLac方案模拟出相对较高的地表摩擦速度、10 m风速、2 m温度和地面PM10浓度以及相对较低的2 m相对湿度,从而模拟的地表沙尘天气过程较强,MYJ、QNSE和MYNN2.5方案模拟的地表沙尘天气则相对较弱,这表明不同边界层参数化方案通过摩擦速度的不同模拟效果对沙尘排放通量和PM10浓度的模拟有重要影响,较大的摩擦速度会使起沙参数化方案计算的沙尘排放通量和PM10浓度更高,加之午后近地层的强风、高温和低湿特征对沙尘天气的增强作用,使得BouLac方案模拟的沙尘天气最强,而QNSE方案的模拟结果最弱;利用民勤站观测资料对5种边界层参数化方案模拟结果的统计分析表明,不同方案对民勤站沙尘暴前后有关气象要素的模拟效果存在一定的差异,其中QNSE方案对PM10浓度的模拟效果最好,BouLac方案对10 m风速的模拟效果最好,YSU方案对2 m温度和2 m相对湿度的模拟效果最好,整体而言,YSU方案对民勤站近地层气象要素的模拟有一定的优势,QNSE方案的模拟结果相对最差。
魏倩,隆霄,赵建华,韩子霏,王思懿. 边界层参数化方案对一次西北地区沙尘天气过程影响的数值模拟研究[J]. 干旱区研究, 2021, 38(1): 163-177.
WEI Qian,LONG Xiao,ZHAO Jianhua,HAN Zifei,WANG Siyi. Impact of boundary layer parameterization schemes on the simulation of a dust event over Northwest China[J]. Arid Zone Research, 2021, 38(1): 163-177.
表1
模式设置及试验设计"
模拟域 | D01 | D02 | D03 |
---|---|---|---|
模拟时段 | 2007年3月27日00:00 UTC-28日00:00 UTC | ||
模拟中心 | 103.08°E,38.63°N | 103.08°E,38.63°N | 103.08°E,38.63°N |
水平分辨率 | 15 km | 5 km | 1.67 km |
格点维数 | 151×111 | 271×211 | 391×331 |
垂直层数 | 30层 | 30层 | 30层 |
顶部气压 | 50 hPa | 50 hPa | 50 hPa |
积分步长 | 60 s | 20 s | 6.7 s |
输出时间分辨率 | 1 h | 5 min | 5 min |
微物理过程 | WSM5 | WSM5 | WSM5 |
短波辐射 | RRTM | RRTM | RRTM |
长波辐射 | RRTM | RRTM | RRTM |
积云参数化 | Kain-Fritsch | - | - |
陆面过程 | Noah | Noah | Noah |
边界层及近地层参数化 | YSU(MM5 M-O)、MYJ(M-O)、QNSE(QNSE)、MYNN2.5(MYNN)和BouLac(MM5 M-O) | ||
起沙参数化 | GOCART-AFWA | GOCART-AFWA | GOCART-AFWA |
表2
边界层参数化方案主要特征"
边界层方案 | 闭合方法及阶数 | 主要特征 | 边界层顶 |
---|---|---|---|
YSU[ | 非局地1阶 | 增加反梯度项及卷夹通量项,增加热力诱导的湍流混合、降低动力强迫的湍流混合 | 理查逊数(Ri),不稳定层结,Ri=0.25,稳定,Ri=0 |
MYJ[ | 局地1.5阶 | 反梯度扩散,用Mellor-Yamada闭合模型表示表面层以上的湍流 | 湍流动能廓线,TKE降至0.2 m2·s-2时高度 |
QNSE[ | 局地1.5阶 | 不稳定层结:采用引入波动项的MYJ方案湍流动能闭合方案;稳定层结:采用稳定条件下改进的湍流谱闭合模式扩散方案 | 湍流动能廓线,TKE降至0.01 m2·s-2时高度 |
MYNN2.5[ | 局地1.5阶 | 反梯度扩散,对气压相关项进行参数化处理,增加表征浮力与切变作用的一组闭合参数 | 湍流动能廓线,TKE降至1.0×10-6 m2·s-2时高度 |
BouLac[ | 局地1.5阶 | 能预报不同类型下垫面、湍流强度和具体位置,并持续预报湍流动能强度 | 湍流动能廓线,TKE降至0.005 m2·s-2时高度 |
表3
2007年3月27日不同气象要素观测及模拟的均值和峰值"
气象要素 | 平均时段 | OBS | YSU | MYJ | QNSE | MYNN2.5 | BouLac | |
---|---|---|---|---|---|---|---|---|
10 m风速/(m·s-1) | 均值 | 07:00—12:00 UTC | 10.6 | 10.4 | 11.2 | 10.3 | 11.2 | 11.3 |
峰值 | - | 15 | 13.2 | 15 | 14 | 14.3 | 14.1 | |
2 m温度/℃ | 均值 | 00:00—00:00 UTC | 12.6 | 11.1 | 10.7 | 10.3 | 10.6 | 11 |
峰值 | - | 21.8 | 20.5 | 21.4 | 20.7 | 20.7 | 21.2 | |
2 m相对湿度/% | 均值 | 00:00—00:00 UTC | 26 | 25 | 29 | 32 | 29 | 27 |
峰值 | - | 43 | 50 | 58 | 65 | 56 | 57 | |
PM10浓度/(μg·m-3) | 均值 | 07:00—12:00 UTC | 4503 | 4787 | 3402 | 3301 | 5944 | 6713 |
峰值 | - | 9647 | 9658 | 6946 | 5462 | 12255 | 16129 | |
沙尘排放通量/(μg·m-2·s-1) | 均值 | 03:00—12:00 UTC | - | 694 | 540 | 448 | 1016 | 861 |
峰值 | - | - | 2996 | 2548 | 1378 | 4497 | 4547 | |
摩擦速度/(m·s-1) | 均值 | 03:00—12:00 UTC | - | 0.90 | 0.86 | 0.83 | 0.90 | 0.90 |
峰值 | - | - | 1.17 | 1.14 | 1.08 | 1.25 | 1.25 |
表4
不同边界层参数化方案对民勤站近地层气象要素及其扰动模拟结果的统计分析"
边界层方案 | 10 m风速/(m·s-1) | 2 m温度(扰动2 m温度)/℃ | 2 m相对湿度(扰动2 m相对湿度)/% | PM10浓度/(μg·m-3) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R | RMSE | R | RMSE | R | RMSE | R | RMSE | ||||
YSU | 0.86 | 2.33 | 0.98(0.24) | 2.11 | 0.98(-0.13) | 3.26 | 0.78 | 1386 | |||
MYJ | 0.84 | 2.85 | 0.98(0.16) | 2.75 | 0.97(-0.04) | 6.57 | 0.80 | 1253 | |||
QNSE | 0.79 | 2.79 | 0.98(0.13) | 3.01 | 0.97(-0.01*) | 10.44 | 0.81 | 1220 | |||
MYNN2.5 | 0.89 | 2.21 | 0.98(0.15) | 2.69 | 0.98(-0.06) | 6.31 | 0.80 | 1725 | |||
BouLac | 0.92 | 1.93 | 0.98(0.23) | 2.28 | 0.96(-0.06) | 5.11 | 0.78 | 2157 |
[1] | 张强. 大气边界层气象学研究综述[J]. 干旱气象, 2003,21(3):74-78. |
[ Zhang Qiang. Review of atmospheric boundary layer meterology[J]. Arid Meteorology, 2003,21(3):74-78. ] | |
[2] |
Banks R F, Tiana-Alsina J, Maria Baldasano J, et al. Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, radiosondes during the HygrA-CD campaign[J]. Atmospheric Research, 2016, 176-177:185-201.
doi: 10.1016/j.atmosres.2016.02.024 |
[3] |
Milovac J, Warrach-Sagi K, Behrendt A, et al. Investigation of PBL schemes combining the WRF model simulations with scanning water vapor differential absorption lidar measurements[J]. Journal of Geophysical Research: Atmospheres, 2016,121(2):624-649.
doi: 10.1002/2015JD023927 |
[4] | Xie B, Fung J C H, Chan A, et al. Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model[J]. Journal of Geophysical Research, 2012,117(D12103). |
[5] | 张碧辉, 刘树华, 马雁军, 等. MYJ和YSU方案对WRF边界层气象要素模拟的影响[J]. 地球物理学报, 2012,55(7):2239-2248. |
[ Zhang Bihui, Liu Shuhua, Ma Yanjun, et al. The effect of MYJ and YSU schemes on the simulation of boundary layer[J]. Chinese Journal of Geophysics, 2012,55(7):2239-2248. ] | |
[6] | 黄文彦, 沈新勇, 王卫国, 等. 边界层参数化方案对边界层热力和动力结构特征影响的比较[J]. 地球物理学报, 2014,57(5):1399-1414. |
[ Huang Wenyan, Shen Xinyong, Wang Weiguo, et al. Comparison of the thermal and dynamic structural characteristics in boundary layer with different boundary layer parameterizations[J]. Chinese Journal of Geophysics, 2014,57(5):1399-1414. ] | |
[7] | 王丽霞, 王颖, 赖锡柳, 等. WRF模式不同边界层参数化方案模拟兰州冬季边界层高度的研究[J]. 高原气象, 2017,36(1):162-172. |
[ Wang Lixia, Wang Ying, Lai Xiliu, et al. Study on the simulation of boundary layer height in Lanzhou in winter using WRF model with different boundary layer parameterization schemes[J]. Plateau Meteorology, 2017,36(1):162-172. ] | |
[8] | 孟露, 赵天良, 杨兴华, 等. 塔克拉玛干沙漠腹地大气边界层参数化方案的模拟评估[J]. 气象科学, 2018,38(2):157-166. |
[ Meng Lu, Zhao Tianliang, Yang Xinghua, et al. An assessment of atmospheric boundary layer schemes over the Taklimakan Desert hinterland[J]. Journal of the Meteorological Sciences, 2018,38(2):157-166. ] | |
[9] | Gunwani P, Mohan M. Sensitivity of WRF model estimates to various PBL parameterizations in different climatic zones over India[J]. Atmospheric Research, 2017,194(9):43-65. |
[10] | Mohan M, Gupta M. Sensitivity of PBL parameterizations on PM10, and ozone simulation using chemical transport model WRF-Chem over a sub-tropical urban airshed in India[J]. Atmospheric Environment, 2018,185:53-63. |
[11] | Banks R F, Baldasano J M. Impact of WRF model PBL schemes on air quality simulations over Catalonia, Spain[J]. Science of The Total Environment, 2016,572:98-113. |
[12] | Sathyanadh A, Prabha T V, Balaji B, et al. Evaluation of WRF PBL parameterization schemes against direct observations during a dry event over the Ganges valley[J]. Atmospheric Research, 2017,193:125-141. |
[13] | 丁成慧, 李江南, 赵杨洁, 等. 边界层参数化方案对南海秋季台风“莎莉嘉”(2016)模拟的影响[J]. 热带气象学报, 2018,34(5):657-673. |
[ Ding Chenghui, Li Jiangnan, Zhao Yangjie, et al. The influence of boundary layer parameterization schemes on autumn typhoon SARIKA(2016) in south China Sea[J]. Journal of Tropical Meteorology, 2018,34(5):657-673. ] | |
[14] | 温晓培, 隆霄, 张述文, 等. 边界层参数化方案对台风SANBA初生阶段影响的数值模拟研究[J]. 热带气象学报, 2016,32(3):346-357. |
[ Wen Xiaopei, Long Xiao, Zhang Shuwen, et al. Parameterization schemes on typhoon SANBA during its initial phase[J]. Journal of Tropical Meteorology, 2016,32(3):346-357. ] | |
[15] | Liu J, Zhang F, Pu Z. Numerical simulation of the rapid intensification of hurricane Katrina(2005): Sensitivity to boundary layer parameterization schemes[J]. Advances in Atmospheric Sciences, 2017,34(4):482-496. |
[16] | 崔驰潇, 包云轩, 袁成松, 等. 不同边界层参数化方案对江苏地区一次平流雾过程的模拟影响[J]. 大气科学, 2018,42(6):1344-1362. |
[ Cui Chixiao, Bao Yunxuan, Yuan Chengsong, et al. Influence of different boundary layer parameterization schemes on the simulation of an advection fog process in Jiangsu[J]. Chinese Journal of Atmospheric Sciences, 2018,42(6):1344-1362. ] | |
[17] | Mylonas M P, Nastos P T, Matsangouras I T. PBL parameterization schemes sensitivity analysis on WRF modeling of a tornadic event environment in Skala Lakonia in September 2015[J]. Atmospheric Research, 2018,208:116-131. |
[18] | 高笃鸣, 李跃清, 蒋兴文, 等. WRF模式多种边界层参数化方案对四川盆地不同量级降水影响的数值试验[J]. 大气科学, 2016,40(2):371-389. |
[ Gao Duming, Li Yueqing, Jiang Xingwen, et al. Influence of planetary boundary layer parameterization schemes on the prediction of rainfall with different magnitudes in the Sichuan Basin using the WRF model[J]. Chinese Journal of Atmospheric Sciences, 2016,40(2):371-389. ] | |
[19] | 李斐, 邹捍, 周立波, 等. WRF模式中边界层参数化方案在藏东南复杂下垫面适用性研究[J]. 高原气象, 2017,36(2):340-357. |
[ Li Fei, Zou Han, Zhou Libo, et al. Study of boundary layer parameterization schemes’ applicability of WRF model over complex underlying surfaces in Southeast Tibet[J]. Plateau Meteorology, 2017,36(2):340-357. ] | |
[20] | Wang J K, Zhang B H, Zhang H D, et al. The impacts of three PBL schemes on the simulation of boundary layer meteorological factors and air pollutants in Northern China[J]. IOP Conference Series: Earth and Environmental Science, 2019,227(5):98-113. |
[21] | 刘筱冉, 王金艳, 邱继勇, 等. 起沙方案对西北地区沙尘过程模拟的影响[J]. 环境保护科学, 2018,44(4):69-76. |
[ Liu Xiaoran, Wang Jinyan, Qiu Jiyong, et al. Impact of dust emission schemes on the simulation of dust storms in the Northwest region[J]. Environmental Protection Science, 2018,44(4):69-76. ] | |
[22] | 黄豪杰. 基于超大尺度结构模化的沙尘暴及沙墙形态数值研究[D]. 兰州: 兰州大学, 2018. |
[ Huang Haojie. Numerical Studies on Sand-Dust Storms and Sand Wall Morphology Based on the Modeling of the Very-Large-Scale Motions[D]. Lanzhou: Lanzhou University, 2018. ] | |
[23] | 赵建华, 张峰, 梁芸, 等. 大气边界层湍流相干结构研究进展[J]. 干旱区研究, 2019,36(6):1419-1430. |
[ Zhao Jianhua, Zhang Feng, Liang Yun, et al. Research progress on turbulent coherent structure in atmospheric boundary layer[J]. Arid Zone Research, 2019,36(6):1419-1430. ] | |
[24] | Hong S Y. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006,134(9):2318-2341. |
[25] | Janjić Z I. The Step-Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes[J]. Monthly Weather Review, 1994,122(5):927-945. |
[26] | Nakanishi M, Niino H. An improved Mellor-Yamada Level-3 Model: Its numerical stability and application to a regional prediction of advection fog[J]. Boundary-Layer Meteorology, 2006,119(2):397-407. |
[27] | Sukoriansky S, Galperin B, Perov V. Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice[J]. Boundary-Layer Meteorology, 2005,117(2):231-257. |
[28] | Bougeault P, Lacarrre P. Parametrization of orography-induced turbulence in a meso-beta model[J]. Monthly Weather Review, 1989,117:1872-1890. |
[29] | Nabavi S O, Haimberger L, Samimi C. Sensitivity of WRF-chem predictions to dust source function specification in West Asia[J]. Aeolian Research, 2017,24:115-131. |
[30] | 隆霄, 赵建华, 黄建平. “07. 3”强沙尘暴天气过程的观测分析[J]. 兰州大学学报(自然科学版), 2012,48(1):69-74. |
[ Long Xiao, Zhao Jianhua, Huang Jianping. Observation and analysis of ‘07. 3’ severe sandstorm[J]. Journal of Lanzhou University (Natural Sciences), 2012,48(1):69-74. ] | |
[31] | 魏倩, 隆霄, 田畅, 等. 民勤一次沙尘暴天气过程的近地层气象要素多尺度特征[J]. 干旱区研究, 2018,35(6):1352-1362. |
[ Wei Qian, Long Xiao, Tian Chang, et al. Multiscale meteorological characteristics during a sandstorm in Minqin[J]. Arid Zone Research, 2018,35(6):1352-1362. ] | |
[32] | 魏倩. 一次沙尘天气过程发展演变的多尺度特征研究[D]. 兰州: 兰州大学, 2020. |
[ Wei Qian. Studies on Multiscale Characteristics during the Evolution of A Dust Event[D]. Lanzhou: Lanzhou University, 2020. ] |
[1] | 薛一波, 张小啸, 雷加强, 李生宇, 王永东, 尤源. 北非埃及地区风蚀沙尘时空变化研究[J]. 干旱区研究, 2023, 40(6): 896-904. |
[2] | 闫晴, 李菊艳, 尹忠东, 刘金苗, 柳宏才. 典型株型沙生灌丛对风沙流场影响的数值模拟[J]. 干旱区研究, 2023, 40(5): 785-797. |
[3] | 程红霞, 林粤江, 陈鹏, 梁凤超, 王勇. 塔里木盆地沙尘天气日数变化及影响因素[J]. 干旱区研究, 2023, 40(11): 1707-1717. |
[4] | 张天意, 刘杰, 杨治纬, 王斌, 程秋连. 基于空-地协同调查的西天山阿尔先沟雪崩过程数值模拟[J]. 干旱区研究, 2023, 40(11): 1729-1743. |
[5] | 薛承杰, 张克存, 安志山, 张宏雪, 潘加朋. 铁路高架桥对局地风动力的影响——以敦格铁路沙山沟为例[J]. 干旱区研究, 2023, 40(10): 1678-1686. |
[6] | 曹怡清,隆霄,李超,王思懿,赵建华. 低空急流对贺兰山东麓两次暴雨影响的数值模拟研究[J]. 干旱区研究, 2022, 39(6): 1739-1752. |
[7] | 刘金苗,李菊艳,尹忠东,关含笑,张家伟. 干枯骆驼刺对风沙流场影响的数值模拟研究[J]. 干旱区研究, 2022, 39(5): 1514-1525. |
[8] | 周宏. 基于多入渗模型的荒漠砂质土壤积水入渗模拟对比[J]. 干旱区研究, 2022, 39(1): 123-134. |
[9] | 买买提阿布都拉·依米尔,阿依夏木古丽·买买提,沙依然·外力,陈天宇,布帕提曼·艾拜都拉,阿依夏木·买买提托合提,毛炜峄. 和田地区沙尘暴时间分布及变化特征[J]. 干旱区研究, 2021, 38(5): 1306-1317. |
[10] | 李帅,陈勇航,侯小刚,王军海,胥志德. FY-2F云量产品在新疆区域的评估及检验[J]. 干旱区研究, 2021, 38(4): 1031-1039. |
[11] | 陈晶,郭晓宁,白文娟,文霞,杨延华. 近60 a柴达木盆地沙尘天气时空变化特征及其影响因子[J]. 干旱区研究, 2021, 38(4): 1040-1047. |
[12] | 张兴鑫,张凯,史博源,崔宝红,赵礼明. 流动沙丘区公路路基风沙流场数值模拟及路面沙害形成机制[J]. 干旱区研究, 2021, 38(4): 1184-1191. |
[13] | 张海亮,李火青,买买提艾力·买买提依明. 新疆夏季行星边界层参数化方案模拟特征研究[J]. 干旱区研究, 2021, 38(1): 154-162. |
[14] | 李玲萍, 李岩瑛, 孙占峰, 王荣喆. 河西走廊东部沙尘暴特征及地面气象因素影响机制[J]. 干旱区研究, 2019, 36(6): 1457-1465. |
[15] | 李宽, 熊鑫, 王海兵, 李钢铁. 内蒙古西部高频沙尘活动空间分布及其成因 [J]. 干旱区研究, 2019, 36(3): 657-663. |
|