干旱区研究 ›› 2024, Vol. 41 ›› Issue (10): 1767-1777.doi: 10.13866/j.azr.2024.10.14 cstr: 32277.14.j.azr.2024.10.14
张玲雪1,2,3(), 李小锋4, 屈军5, 马美瑜5, 张建斌5, 李耀明1,2,3()
收稿日期:
2024-03-19
修回日期:
2024-05-20
出版日期:
2024-10-15
发布日期:
2024-10-14
通讯作者:
李耀明. E-mail: lym@ms.xjb.ac.cn作者简介:
张玲雪(1997-),女,硕士研究生,研究方向为植物生理生态学. E-mail: lingxiang199812@163.com
基金资助:
ZHANG Lingxue1,2,3(), LI Xiaofeng4, QU Jun5, MA Meiyu5, ZHANG Jianbin5, LI Yaoming1,2,3()
Received:
2024-03-19
Revised:
2024-05-20
Published:
2024-10-15
Online:
2024-10-14
摘要:
本研究以荒漠灌木四翅滨藜(Atriplex canescens)幼苗为实验对象,通过盆栽试验,分别在2个自然盐分水平下(低盐6.4 g·kg-1、中盐13.3 g·kg-1)设置4个控水添加梯度(W1、W2、W3和W4,分别为添加土壤质量含水量3%、6%、9%和12%),探讨四翅滨藜生理生长指标对水盐胁迫的响应特征。结果表明:(1) 除脯氨酸外,盐分处理对生理生长指标无显著影响,但水分处理对其有显著影响。(2) 各盐分处理下,W1处理较W4处理的抗氧化酶(超氧化物歧化酶、过氧化物酶)、渗透调节物质(淀粉、可溶性糖、脯氨酸)含量增加,尤其脯氨酸和可溶性糖响应更敏感。四翅滨藜根冠比随干旱程度增加而增加,而其根、茎、叶生物量呈相反变化趋势。(3) 主成分分析表明,四翅滨藜的渗透调节物质、抗氧化酶与形态指标共同响应以适应水盐胁迫,其中第一轴解释了生理生长指标变异的31.92%。综上所述,四翅滨藜具有较强的生理生长调节能力,能够通过提高渗透调节物质、抗氧化酶、增强吸收水分的能力以及调节生物量分配来抵御水盐胁迫的环境。
张玲雪, 李小锋, 屈军, 马美瑜, 张建斌, 李耀明. 水盐胁迫对四翅滨藜生理生长特性的影响[J]. 干旱区研究, 2024, 41(10): 1767-1777.
ZHANG Lingxue, LI Xiaofeng, QU Jun, MA Meiyu, ZHANG Jianbin, LI Yaoming. Effects of water and salt stress on the physiological growth characteristics of Atriplex canescens[J]. Arid Zone Research, 2024, 41(10): 1767-1777.
表1
主成分载荷"
指标 | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
叶绿素a | 0.38 | 0.50 | -0.38 | 0.74 |
叶绿素b | 0.51 | 0.63 | -0.03 | 0.68 |
可溶性糖 | -0.65 | -0.53 | -0.36 | 0.38 |
脯氨酸 | -0.55 | -0.63 | -0.02 | 0.46 |
淀粉 | -0.57 | 0.25 | -0.25 | -0.24 |
超氧化物歧化酶 | -0.21 | -0.09 | -0.74 | -0.18 |
过氧化物酶 | -0.19 | -0.19 | -0.24 | -0.36 |
根生物量 | 0.86 | -0.30 | -0.06 | -0.42 |
茎生物量 | 0.89 | -0.26 | 0.41 | -0.16 |
叶生物量 | 0.97 | -0.05 | 0.37 | -0.06 |
根冠比 | -0.24 | -0.25 | -0.41 | -0.26 |
比叶面积 | -0.26 | 0.47 | -0.65 | -0.10 |
叶片含水量 | 0.36 | 0.52 | -0.38 | -0.62 |
比根长 | -0.8 | 0.30 | 0.44 | -0.13 |
比根体积 | -0.78 | 0.46 | 0.28 | -0.20 |
比根面积 | -0.76 | 0.45 | 0.44 | -0.15 |
贡献率/% | 31.92 | 14.07 | 13.08 | 12.32 |
累计贡献率/% | 31.92 | 45.99 | 59.07 | 71.39 |
[1] | 刘丽娟, 李小玉. 干旱区土壤盐分积累过程研究进展[J]. 生态学杂志, 2019, 38(3): 891-898. |
[Liu Lijuan, Li Xiaoyu. Progress in the study of soil salt accumulation in arid region[J]. Chinese Journal of Ecology 2019, 38(3): 891-898.] | |
[2] | Yan K, Shao H, Shao C, et al. Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone[J]. Acta Physiologiae Plantarum, 2013, 35(10): 2867-2878. |
[3] | Tang X, Mu X, Shao H, et al. Global plant-responding mechanisms to salt stress: Physiological and molecular levels and implications in biotechnology[J]. Critial Reviews in Biotechnology, 2015, 35(4): 425-437. |
[4] | Kalaji H M, Jajoo A, Oukarroum A, et al. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions[J]. Acta Physiologiae Plantarum, 2016, 38(4): 102. |
[5] | van Dijk G, Smolders A J P, Loeb R, et al. Salinization of coastal freshwater wetlands; effects of constant versus fluctuating salinity on sediment biogeochemistry[J]. Biogeochemistry, 2015, 126(1): 71-84. |
[6] |
杨彪生, 单立山, 马静, 等. 红砂幼苗生长及根系形态特征对干旱-复水的响应[J]. 干旱区研究, 2021, 38(2): 469-478.
doi: 10.13866/j.azr.2021.02.18 |
[Yang Biaosheng, Shan Lishan, Ma Jing, et al. Response of growth and root morphological characteristics of Reaumuria soongorica seedlings to drought-rehydration[J]. Arid Zone Research, 2021, 38(2): 469-478.]
doi: 10.13866/j.azr.2021.02.18 |
|
[7] | 徐梦琦, 高艳菊, 张志浩, 等. 骆驼刺叶片和根系主要功能性状对水分胁迫的适应[J]. 草业科学, 2021, 38(8): 1559-1669. |
[Xu Mengqi, Gao Yanju, Zhang Zhihao, et al. Adaptation of the main functional trait of Alhagi sparsifolia leaves and roots to soil water stress[J]. Pratacultural Science, 2021, 38(8): 1559-1669.] | |
[8] |
颜巧芳, 单立山, 解婷婷, 等. 珍珠柴幼苗叶片和根系形态特征对干旱胁迫的响应[J]. 干旱区研究, 2024, 41(1): 92-103.
doi: 10.13866/j.azr.2024.01.09 |
[Yan Qiaofang, Shan Lishan, Xie Tingting, et al. Morphological characteristics of the leaves and roots of Caroxylon passerinum seedlings in response to drought-induced stress[J]. Arid Zone Research, 2024, 41(1): 92-103.]
doi: 10.13866/j.azr.2024.01.09 |
|
[9] |
钱玥, 李思源, 饶良懿. 盐碱胁迫对菊芋渗透调节及抗氧化酶系统的影响[J]. 干旱区研究, 2023, 40(9): 1465-1471.
doi: 10.13866/j.azr.2023.09.10 |
[Qian Yue, Li Siyuan, Rao Liangyi. Effects of saline-alkali stress on organic osmoregulatory substances and antioxidant enzyme systems of Helianthus tuberosus[J]. Arid Zone Research, 2023, 40(9): 1465-1471.] | |
[10] | 吴永波, 叶波. 高温干旱复合胁迫对构树幼苗抗氧化酶活性和活性氧代谢的影响[J]. 生态学报, 2016, 36(2): 403-410. |
[Wu Yongbo, Ye Bo. Effects of combined elevated temperature and drought stress on anti-oxidative enzyme activities and reactive oxygen species metabolism of Broussonetia papyrifera seedlings[J]. Acta Ecologica Sinica, 2016, 36(2): 403-410.] | |
[11] | Usman M, Bokhari S A M, Fatima B, et al. Drought stress mitigating morphological, physiological, biochemical, and molecular responses of guava (Psidium guajava L.) cultivars[J]. Frontiers in Plant Science, 2022, 13: 1-16. |
[12] | 牛欣益, 马瑞. 红砂幼苗叶片生理特性对干旱胁迫的响应[J]. 草业科学, 2023, 40(10): 2483-2492. |
[Niu Xinyi, Ma Rui. Effects of drought stress on leaf physiology of Reaumuria soongorica seedlings during the growing season[J]. Pratacultural Science, 2023, 40(10): 2483-2492.] | |
[13] |
Abdalla M, Ahmed M A, Cai G C, et al. Coupled effects of soil drying and salinity on soil-plant hydraulics[J]. Plant Physiology, 2022, 190(2): 1228-1241.
doi: 10.1093/plphys/kiac229 pmid: 35579362 |
[14] | Fonta J E, Giri J, Vejchasarn P, et al. Spatiotemporal responses of rice root architecture and anatomy to drought[J]. Plant and Soil, 2022, 479(1-2): 443-464. |
[15] |
赵文武, 赵鑫, 谢文辉, 等. 干旱胁迫下白刺花幼苗根系生长和生理特性的响应[J]. 草地学报, 2023, 31(1): 120-129.
doi: 10.11733/j.issn.1007-0435.2023.01.014 |
[Zhao Wenwu, Zhao Xin, Xie Wenhui, et al. Response of root growth and development and physiological characteristics of Sophora davidii under drought stress[J]. Acta Agrestia Sinica, 2023, 31(1): 120-129.]
doi: 10.11733/j.issn.1007-0435.2023.01.014 |
|
[16] | 王帆, 何奇瑾, 周广胜. 夏玉米三叶期持续干旱下不同叶位叶片含水量变化及其与光合作用的关系[J]. 生态学报, 2019, 39(1): 254-264. |
[Wang Fan, He Qijin, Zhou Guangsheng. Leaf water content at different positions and its relationship with photosynthesis when consecutive drought treatments are applied to summer maize from the 3-leaf stage[J]. Acta Ecologica Sinica, 2019, 39(1): 254-264.] | |
[17] | 王旭明, 麦绮君, 周鸿凯, 等. 盐胁迫对4个水稻种质抗逆性生理的影响[J]. 热带亚热带植物学报, 2019, 27(2): 149-156. |
[Wang Xuming, Mai Qijun, Zhou Hongkai, et al. Effects of salt stress on resistance physiology of four rice germplasms[J]. Journal of Tropical and Subtropical Botany, 2019, 27(2): 149-156.] | |
[18] | 王佳敏, 宋海燕, 陈金艺, 等. 多年生黑麦草对干旱胁迫下喀斯特异质生境的生长响应策略[J]. 生态学报, 2020, 40(13): 4566-4572. |
[Wang Jiamin, Song Haiyan, Chen Jinyi, et al. Response strategies of Lolium perenne L. to karst heterogeneous habitats under drought stress[J]. Acta Ecologica Sinica 2020, 40(13): 4566-4572.] | |
[19] | 刘可佳, 何念鹏, 侯继华. 中国温带典型森林植物比叶面积的空间格局及其影响因素[J]. 生态学报, 2022, 42(3): 872-883. |
[Liu Kejia, He Nianpeng, Hou Jihua. Spatial patterns and influencing factors of specific leaf area in typical temperate forests[J]. Acta Ecologica Sinica, 2022, 42(3): 872-883.] | |
[20] | Wasaya A, Zhang X Y, Fang Q, et al. Root phenotyping for drought tolerance: A review[J]. Agriculture-Basel, 2018, 8(11): 1-19. |
[21] | Brown E P G J. Effects of soil salt levels on the growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soil[J]. American Journal of Botany, 1998, 85(1): 10-16. |
[22] | Hao G Y, Lucero M E, Sanderson S C, et al. Polyploidy enhances the occupation of heterogeneous environments through hydraulic related trade-offs in Atriplex canescens (Chenopodiaceae)[J]. New Phytologist, 2012, 197(3): 970-978. |
[23] | Pan Y Q, Guo H, Wang S M, et al. The photosynthesis, Na+/K+homeostasis and osmotic adjustment of Atriplex canescens in response to salinity[J]. Frontiers in Plant Science, 2016, 7: 1-14. |
[24] | Guo H, Cui Y N, Pan Y Q, et al. Sodium chloride facilitates the secretohalophyte Atriplex canescens adaptation to drought stress[J]. Plant Physiology Biochemistry, 2020, 150: 99-108. |
[25] | 张震中, 张潭, 李倩, 等. 四翅滨藜生理生化特征对盐胁迫的响应[J]. 西北植物学报, 2017, 37(12): 2435-2443. |
[Zhang Zhenzhong, Zhang Tan, Li Qian, et al. Physiological and biochemical responses of Atriplex canescens seedlings to salt stress[J]. Acta Botanica Boreali-Occidential Sinica, 2017, 37(12): 2435-2443.] | |
[26] | 柴薇薇. 张掖市四翅滨藜引种抗旱适应性研究[D]. 兰州: 甘肃农业大学, 2007. |
[Cai Weiwei. Study on Introductions and Drought Resistance and Adaptability of Atriplex canescens in Zhangye City[D]. Lanzhou: Gansu Agricultural University, 2007.] | |
[27] | 康才周. 四翅滨藜在不同土壤水分胁迫下的生理生态响应[D]. 兰州: 甘肃农业大学, 2006. |
[Kang Caizhou. Eco-Physiological Responses of Atriplex canescens under Different Soil Water Stresses[D]. Lanzhou: Gansu Agricultural University, 2006.] | |
[28] | 王新英, 史军辉, 刘茂秀, 等. 四翅滨藜主要渗透调节物质对NaCl胁迫累积的响应[J]. 干旱区研究, 2012, 29(4): 621-627. |
[Wang Xinying, Shi Junhui, Liu Maoxiu, et al. Response of main osmotic adjustment substances to NaCl stress accumulation in Atriplex canescens[J]. Arid Zone Research, 2012, 29(4): 621-627.] | |
[29] |
郭欢, 潘雅清, 包爱科. NaCl在四翅滨藜适应渗透胁迫中的作用[J]. 草业学报, 2020, 29(7): 112-121.
doi: 10.11686/cyxb2019394 |
[Guo Huan, Pan Yaqing, Bao Aike. Effect of NaCl on the adaption of Atriplex canescens under osmotic stress[J]. Acta Prataculturae Sinica, 2020, 29(7): 112-121.]
doi: 10.11686/cyxb2019394 |
|
[30] | 罗家雄. 新疆垦区盐碱地改良[M]. 北京: 水利电力出版社, 1985: 35. |
[Luo Jiaxiong. Improvement of Saline and Alkaline Land in Xinjiang Reclamation Area[M]. Beijing: Water Conservancy and Electric Power Press, 1985: 35.] | |
[31] | 李祥东. 西北干旱区土壤水分时空变异特征及其影响因素研究[D]. 北京: 中国科学院大学, 2019. |
[Li Xiangdong. Spatial-temporal Variability of Soil Moisture and Influencing Factors in Northwest Arid Area of China[D]. Beijing: University of Chinese Academy of Sciences, 2019.] | |
[32] | 张潭. 柴达木地区几个主要树种的抗旱耐盐碱生理生化特征研究[D]. 北京: 北京林业大学, 2019. |
[Zhang Tan. Studies on Drought and Salinity Resistant Physiology and Biochemistry Characteristics of Main Tree Species in Qaidam Basin[D]. Beijing: Beijing Forestry University, 2019.] | |
[33] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
[Li Hesheng. Principles and Techniques of Plant Physiology and Biochemistry Experiments[M]. Beijing: Higher Education Press, 2000.] | |
[34] | 刘燕, 张凌楠, 刘晓宏, 等. 干旱胁迫植物个体生理响应及其生态模型预测研究进展[J]. 生态学报, 2023, 43(24): 10042-10053. |
[Liu Yan, Zhang Lingnan, Liu Xiaohong, et al. Research progress from individual plant physiological response to ecological model prediction under drought stress[J]. Acta Ecologica Sinica, 2023, 43(24): 10042-10053.] | |
[35] |
楚乐乐, 罗成科, 田蕾, 等. 植物对碱胁迫适应机制的研究进展[J]. 植物遗传资源学报, 2019, 20(4): 836-844.
doi: 10.13430/j.cnki.jpgr.20181129004 |
[Chu Lele, Luo Chengke, Tian Lei, et al. Research advance in plants’adaptation to alkali stress[J]. Journal of Plant Genetic Resources, 2019, 20(4): 836-844.]
doi: 10.13430/j.cnki.jpgr.20181129004 |
|
[36] |
Fang Y J, Xiong L Z. General mechanisms of drought response and their application in drought resistance improvement in plants[J]. Cellular and Molecular Life Sciences, 2015, 72(4): 673-689.
doi: 10.1007/s00018-014-1767-0 pmid: 25336153 |
[37] | 梁青兰, 韩友吉, 乔艳辉, 等. 干旱胁迫对黑杨派无性系生长及生理特性的影响[J]. 北京林业大学学报, 2023, 45(10): 81-89. |
[Liang Qinglan, Han Youji, Qiao Yanhui, et al. Effects of drought stress on the growth and physiological characteristics of Sect. Aigeiros clones[J]. Journal of Beijing Forestry University 2023, 45(10): 81-89.] | |
[38] |
张天泽, 孟凡君, 尹大川. 干旱胁迫下外生菌根菌对山新杨幼苗生物量,渗透调节物质和抗氧化酶的影响[J]. 菌物学报, 2023, 42(7): 1558-1574.
doi: 10.13346/j.mycosystema.220393 |
[Zhang Tianze, Meng Fanjun, Yin Dachuan. Effects of ectomycorrhizal fungi on biomass, osmoregulatory substances and antioxidant enzymes of Populus davidiana×P. bolleana seedlings under drought stress[J]. Mycology, 2023, 42(7): 1558-1574.] | |
[39] |
Zhang S H, Xu X F, Sun Y M, et al. Influence of drought hardening on the resistance physiology of potato seedlings under drought stress[J]. Journal of Integrative Agriculture, 2018, 17(2): 336-347.
doi: 10.1016/S2095-3119(17)61758-1 |
[40] | 柯梅, 侯钰荣, 魏鹏, 等. 干旱胁迫下心叶驼绒藜生理响应特性[J]. 草业科学, 2023, 40(5): 1349-1357. |
[Ke Mei, Hou Yurong, Wei Peng, et al. Physiological responses of Krascheninnikovia ewersmannia under drought stress[J]. Pratacultural Science, 2023, 40(5): 1349-1357.] | |
[41] | 贾鑫, 孙窗舒, 李光跃, 等. 干旱胁迫对蒙古黄芪生长和生理生化指标及其黄芪甲苷积累的影响[J]. 西北植物学报, 2018, 38(3): 501-509. |
[Jia Xin, Sun Chuangshu, Li Guangyue, et al. Effect of drought stress on the growth and physiological characteristics and the accumulation of astragaloside IV secondary metabolites of Astragalus membranaceus (Fisch.) var. mongholicus (Bge.) Hsiao[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(3): 501-509.] | |
[42] | 麦格皮热提古丽·达吾提, 王海鸥, 陈晓楠, 等. 干旱胁迫下丛枝菌根真菌对疏叶骆驼刺和多枝柽柳生长及生理的影响[J]. 西北植物学报, 2023, 43(11): 1897-1909. |
[Maigepiretiguli Dawuti, Wang Hai’ou, Chen Xiaonan, et al. Effects of arbuscular mycorrhizal fungi on the growth and physiological characteristics of Alhagi sparsifolia and Tamarix ramosissima under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(11): 1897-1909.] | |
[43] | Bao G Z, Tang W Y, An Q R, et al. Physiological effects of the combined stresses of freezing-thawing, acid precipitation and deicing salt on alfalfa seedlings[J]. BMC Plant Biology, 2020, 20(1): 1-9. |
[44] | Singh M, Kumar J, Singh S, et al. Roles of osmoprotectants in improving salinity and drought tolerance in plants: A review[J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(3): 407-426. |
[45] | Sánchez-Rodríguez E, Rubio-Wilhelmi M, Cervilla L M, et al. Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants[J]. Plant Science, 2010, 178(1): 30-40. |
[46] |
汤东, 程平, 杨建军, 等. 天山北坡山前植物对干旱胁迫的生理响应[J]. 干旱区研究, 2021, 38(6): 1683-1694.
doi: 10.13866/j.azr.2021.06.20 |
[Tang Dong, Cheng Ping, Yang Jianjun, et al. Physiological responses of plants to drought stress in the northern piedmont, Tianshan Mountains[J]. Arid Zone Research, 2021, 38(6): 1683-1694.]
doi: 10.13866/j.azr.2021.06.20 |
|
[47] | Henry H A L, Abedi M, Alados C L, et al. Increased soil frost versus summer drought as drivers of plant biomass responses to reduced precipitation: Results from a globally coordinated field experiment[J]. Ecosystems, 2018, 21(7): 1432-1444. |
[48] |
韩喆, 张永强, 张浩浩, 等. 干旱胁迫对伊犁绢蒿幼苗生长及叶片解剖结构的影响[J]. 草地学报, 2024, 32(1): 105-112.
doi: 10.11733/j.issn.1007-0435.2024.01.011 |
[Han Zhe, Zhang Yongqiang, Zhang Haohao, et al. Effects of drought stresson growthand leaf anatomical structure of seriphidium transiliense seedlings[J]. Acta Agrestia Sinica, 2024, 32(1): 105-112.] | |
[49] | 朱铁霞, 高阳, 高凯, 等. 干旱胁迫下菊芋各器官生物量及物质分配规律[J]. 生态学报, 2019, 39(21): 8021-8026. |
[Zhu Tiexia, Gao Yang, Gao Kai, et al. Organ biomass and resource allocation in response to drought stress in Jerusalem artichoke[J]. Acta Ecologica Sinica, 2019, 39(21): 8021-8026.] | |
[50] |
李斐, 孙明伟, 钟尚志, 等. 不同光合类型牧草对干旱-复水的光合生理响应及生长适应策略[J]. 植物生态学报, 2022, 46(1): 74-87.
doi: 10.17521/cjpe.2021.0203 |
[Li Fei, Sun Mingwei, Zhong Shangzhi, et al. Photosynthetic physiology and growth adaptation of herbages with different photosynthetic pathways in response to drought-rehydration[J]. Chinese Journal of Plant Ecologywas, 2022, 46(1): 74-87.] | |
[51] | Yan S Y, Weng B S, Jing L S, et al. Adaptive pathway of summer maize under drought stress: Transformation of root morphology and water absorption law[J]. Frontiers in Earth Science, 2022, 10: 1-17. |
[52] |
Dong T F, Duan B L, Zhang S, et al. Growth, biomass allocation and photosynthetic responses are related to intensity of root severance and soil moisture conditions in the plantation tree Cunninghamia lanceolata[J]. Tree Physiology, 2016, 36(7): 807-817.
doi: 10.1093/treephys/tpw025 pmid: 27122365 |
[53] | 张东, 刘艳, 张晗, 等. 甘草叶片渗透调节物质及蔗糖代谢相关酶对干旱胁迫的响应特性[J]. 西北植物学报, 2020, 40(5): 819-827. |
[Zhang Dong, Liu Yan, Zhang Han, et al. Response of osmotic regulators and sucrose metabolization-related enzymes to drought stress in Glycyrrhiza uralensis[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(5): 819-827.] |
[1] | 杨竹青, 王磊, 张雪, 申建香, 张伊婧, 李欣宇, 张波, 牛金帅. 典型固沙植物种子萌发和幼苗生长对土壤水分的响应[J]. 干旱区研究, 2024, 41(5): 830-842. |
[2] | 许静, 王德仁. 基于适应性循环的兰西城市群生态网络构建与优化[J]. 干旱区研究, 2024, 41(5): 856-864. |
[3] | 胡焕琼, 李利, 于军, 梁海连, 吕瑞恒. 四翅滨藜和多枝柽柳对土壤干旱的响应差异[J]. 干旱区研究, 2023, 40(12): 2007-2015. |
[4] | 郑欣如, 王树森, 王博, 张欣, 刘静, 胡晶华, 李诗文, 袁亚楠, 王丫博. 采煤沉陷区模拟土壤侵蚀胁迫对黑沙蒿生理生长特性的影响[J]. 干旱区研究, 2023, 40(11): 1806-1814. |
[5] | 高彦婷,张芮,李红霞,魏鹏程. 水分胁迫对葡萄糖分及其蔗糖代谢酶活性的影响[J]. 干旱区研究, 2021, 38(6): 1713-1721. |
[6] | 杨昌钰,张芮,蔺宝军,董博,高彦婷,李红霞,张彩霞,王喜红. 水分胁迫对设施延迟栽培葡萄根际土壤有机氮及土壤酶活性的影响[J]. 干旱区研究, 2021, 38(5): 1376-1384. |
[7] | 陈斐,闫霜,王鹤龄,张凯,赵福年,黄小燕. 不同水分胁迫下的春小麦叶片气体交换参数和水分利用效率研究[J]. 干旱区研究, 2021, 38(3): 821-832. |
[8] | 苏志豪,周晓兵,姜小龙,王留强,公延明,康晓珊. 不同土壤水分条件下沙生柽柳(Tamarix taklamakanensis)的生理生化特征及适应性[J]. 干旱区研究, 2021, 38(1): 198-206. |
[9] | 张静鸽, 田福平, 苗海涛, 黄泽, 武高林. 水分胁迫及复水过程4种牧草形态及其生理特征表达[J]. 干旱区研究, 2020, 37(1): 193-201. |
[10] | 蔺宝军, 张芮, 董博, 王引弟, 张小艳. 水分优化对温室葡萄产量及土壤生物学特性的影响[J]. 干旱区研究, 2020, 37(1): 126-133. |
[11] | 刘军, 齐广平, 康燕霞, 马彦麟, 栗志. 土壤水分胁迫对紫花苜蓿光合特性及其生物量的影响[J]. 干旱区研究, 2019, 36(4): 893-900. |
[12] | 高冠龙,冯起,张小由,司建华,鱼腾飞. 植物叶片光合作用的气孔与非气孔限制研究综述[J]. 干旱区研究, 2018, 35(4): 929-937. |
[13] | 张永勋,刘某承,闵庆文,伦飞,张灿强. 陕西佳县枣林生态系统环境适应性及服务功能价值评估[J]. 干旱区研究, 2014, 31(3): 416-423. |
[14] | 刘有军, 刘世增, 康才周, 满多清, 李德禄, 李银科. 青海云杉种子萌发特性[J]. 干旱区研究, 2013, 30(5): 877-881. |
[15] | 贺学礼, 杨欢, 杨莹莹, 郭辉娟, 韦阅. 沙棘AM真菌孢子形态结构及其生态适应性[J]. 干旱区研究, 2013, 30(1): 96-100. |
|