[1] |
陈曦, 姜逢清, 王亚俊, 等. 亚洲中部干旱区生态地理格局研究[J]. 干旱区研究, 2013, 30(3): 385-390.
|
|
[Chen Xi, Jiang Fengqing, Wang Yajun, et al. Characteristics of the eco-geographical pattern in arid land of central Asia[J]. Arid Zone Research, 2013, 30(3): 385-390.]
|
[2] |
胡汝骥, 樊自立, 王亚俊, 等. 中国西北干旱区的地下水资源及其特征[J]. 自然资源学报, 2002, 17(3): 321-326.
|
|
[Hu Ruji, Fan Zili, Wang Yajun, et al. Groundwater resources and their characteristics in arid lands of Northwest China[J]. Journal of Natural Resources, 2002, 17(3): 321-326.]
|
[3] |
张丙乾. 新疆土壤盐碱化及其防治[J]. 干旱区研究, 1993, 10(1): 55-61.
|
|
[Zhang Bingqian. Soil salinization and its prevention in Xinjiang[J]. Arid Zone Research, 1993, 10(1): 55-61.]
|
[4] |
赵晨光, 李慧瑛, 鱼腾飞, 等. 腾格里沙漠东北缘人工植被对土壤物理性质的影响[J]. 干旱区研究, 2022, 39(4): 1112-1121.
|
|
[Zhao Chenguang, Li Huiying, Yu Tengfei, et al. Effects of artificial vegetation construction on soil physical properties in the northeastern edge of Tengger Desert[J]. Arid Zone Research, 2022, 39(4): 1112-1121.]
|
[5] |
Lv W, Qiu Y, Xie Z, et al. Gravel mulching effects on soil physicochemical properties and microbial community composition in the Loess Plateau, northwestern China[J]. European Journal of Soil Biology, 2019, 94(10): 103-115.
|
[6] |
郭泽呈, 魏伟, 石培基, 等. 中国西北干旱区土地沙漠化敏感性时空格局[J]. 地理学报, 2020, 75(9): 1948-1965.
doi: 10.11821/dlxb202009010
|
|
[Guo Zecheng, Wei Wei, Shi Peiji, et al. Spatiotemporal changes of land desertification sensitivity in the arid region of Northwest China[J]. Acta Geographica Sinca, 2020, 75(9): 1948-1965.]
|
[7] |
Yinglan A, Wang G, Liu T, et al. Spatial variation of correlations between vertical soil water and evapotranspiration and their controlling factors in a semi-arid region[J]. Journal of Hydrology, 2019, 574(14): 53-63.
doi: 10.1016/j.jhydrol.2019.04.023
|
[8] |
Wang Y, Zhao Y, Yan L, et al. Groundwater regulation for coordinated mitigation of salinization and desertification in arid areas[J]. Agricultural Water Management, 2022, 271(12): 107758.
doi: 10.1016/j.agwat.2022.107758
|
[9] |
Yan M, Zuo H, Wang H, et al. Snow resisting capacity of Caragana microphylla and Achnatherum splendens in a typical steppe region of Inner Mongolia, China[J]. Journal of Arid Land, 2020, 12(2): 294-302.
doi: 10.1007/s40333-019-0021-x
|
[10] |
Kjoeller A, Struwe S. Microfungi in ecosystems: Fungal occurrence and activity in litter and soil[J]. Oikos, 1982(6), 391-422.
|
[11] |
Li P, Li W, Dumbrell A J, et al. Spatial variation in soil fungal communities across paddy fields in subtropical China[J]. Msystems, 2020, 5(1): 704-719.
|
[12] |
Yang Y, Wu P. Soil bacterial community varies but fungal community stabilizes along five vertical climate zones[J]. Catena, 2020, 195(5): 104841.
doi: 10.1016/j.catena.2020.104841
|
[13] |
徐鹏, 荣晓莹, 刘朝红, 等. 极端干旱对温带荒漠土壤真菌群落和生态网络的影响[J]. 生物多样性, 2022, 30(3): 70-83.
|
|
[Xu Peng, Rong Xiaoying, Liu Chaohong, et al. Effects of extreme drought on community and ecological network of soil fungi in a temperate desert[J]. Biodiversity Science, 2022, 30(3): 70-83.]
|
[14] |
郭晓雯, 杜思垚, 王芳霞, 等. 长期咸水滴灌对棉田土壤细菌和真菌群落结构的影响[J]. 新疆农业科学, 2022, 59(12): 2909-2923.
doi: 10.6048/j.issn.1001-4330.2022.12.006
|
|
[Guo Xiaowen, Du Siyao, Wang Fangxia, et al. Effects of long-term saline water irrigation on soil bacterial and fungi community structure in cotton field[J]. Xinjiang Agricultural Sciences, 2022, 59(12): 2909-2923.]
doi: 10.6048/j.issn.1001-4330.2022.12.006
|
[15] |
郭蓉, 吴旭东, 王占军, 等. 荒漠草原土壤细菌和真菌群落对降水变化的响应[J]. 应用生态学报, 2023, 34(6): 1500-1508.
doi: 10.13287/j.1001-9332.202306.012
|
|
[Guo Rong, Wu Xudong, Wang Zhanjun, et al. Response of soil bacteria and fungal communities to altered precipitation in desert steppe[J]. Chinese Journal of Applied Ecology, 2023, 34(6): 1500-1508.]
doi: 10.13287/j.1001-9332.202306.012
|
[16] |
Glassman S I, Wang I J, Bruns T D. Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales[J]. Molecular Ecology, 2017, 26(24): 6960-6973.
doi: 10.1111/mec.14414
pmid: 29113014
|
[17] |
张鹏, 李颖, 王业林, 等. 短脚锦鸡儿灌丛对植物群落和土壤微生物群落的促进效应研究[J]. 干旱区研究, 2021, 38(2): 421-428.
|
|
[Zhang Peng, Li Ying, Wang Yelin, et al. The positive effect of Caragana breviflora shrubs on plant communities and soil microbial communities in the Inner Mongolia desert region[J]. Arid Zone Research, 2021, 38(2): 421-428.]
|
[18] |
Manzoni S, Katul G, Fay PA, et al. Modeling the vegetation-atmosphere carbon dioxide and water vapor interactions along a controlled CO2 gradient[J]. Ecol Model, 2011, 222(3): 653-665.]
doi: 10.1016/j.ecolmodel.2010.10.016
|
[19] |
中国科学院新疆综合考察队, 地理研究所, 北京师范大学地理系. 新疆地貌[M]. 北京: 科学出版社, 1978.
|
|
[Xinjiang Comprehensive Investigation Team of China Academy of Sciences, Institute of Geography, Department of Geography, Beijing Normal University. Xinjiang Geomorphology[M]. Beijing: Science Press, 1978.]
|
[20] |
尚浩博. 资源环境常规分析方法[M]. 杨凌: 西北农林科技大学出版社, 2010.
|
|
[Shang Haobo. Conventional Analysis Methods of Resources and Environment[M]. Yangling: Northwest A & F University Press, 2010.]
|
[21] |
何文寿, 刘阳春, 何进宇. 宁夏不同类型盐渍化土壤水溶盐含量与其电导率的关系[J]. 干旱地区农业研究, 2010, 28(1): 111-116.
|
|
[He Wenshou, Liu Yangchun, He Jinyu. Relationships between soluble salt content and electrical conductivity of different types of salt-affected soils in Ningxia[J]. Agricultural Research in the Arid Areas, 2010, 28(1): 111-116.]
|
[22] |
Rodrigo A, Avila A. Influence of sampling size in the estimation of mean throughfall in two Mediterranean holm oak forests[J]. Journal of Hydrology, 2001, 243(3-4): 216-227.
doi: 10.1016/S0022-1694(00)00412-1
|
[23] |
Wang Y, Jiao P, Guo W, et al. Changes in bulk and rhizosphere soil microbial diversity and composition along an age gradient of Chinese Fir (Cunninghamia lanceolate) plantations in subtropical China[J]. Front Microbiol, 2021, 12(14): 777-862.
|
[24] |
龚子同, 陈鸿昭, 杨帆, 等. 中亚干旱区土壤地球化学和环境[J]. 干旱区研究, 2017, 34(1): 1-9.
|
|
[Gong Zitong, Chen Hongzhao, Yang Fan, et al. Pedogechemistry and environment of aridisol regions in Central Asia[J]. Arid Zone Research, 2017, 34(1): 1-9.]
|
[25] |
程维明, 柴慧霞, 周成虎, 等. 新疆地貌空间分布格局分析[J]. 地理研究, 2009, 28(5): 1157-1169.
|
|
[Cheng Weiming, Chai Huixia, Zhou Chenghu, et al. The spatial distribution patterns of digital geomorphology in Xinjiang[J]. Geographical Research, 2009, 28(5): 1157-1169.]
doi: 10.11821/yj2009050002
|
[26] |
刘茜雅, 王海兵, 左合君, 等. 苏宏图戈壁沉积物分形空间变异性及其成因[J]. 干旱区地理, 2021, 44(1): 168-177.
|
|
[Liu Qianya, Wang Haibing, Zuo Hejun, et al. Fractal spatial variability and its genesis of sediments in Suhongtu Gobi[J]. Arid Land Geography, 2021, 44(1): 168-177.]
|
[27] |
Shi X, Wang H, Song J, et al. Impact of saline soil improvement measures on salt content in the abandonment-reclamation process[J]. Soil and Tillage Research, 2021, 208: 104867.
doi: 10.1016/j.still.2020.104867
|
[28] |
王世明, 范敬龙, 赵英, 等. 咸水灌溉条件下塔里木河下游沙漠土壤水盐运移数值模拟[J]. 干旱区地理, 2021, 44(4): 1104-1113.
|
|
[Wang Shiming, Fan Jinglong, Zhao Ying, et al. Numerical simulation of water and salt migration in desert of the lower reaches of Tarim River under saline water irrigation[J]. Arid Land Geography, 2021, 44(4): 1104-1113.]
|
[29] |
王雪梅, 柴仲平, 武红旗. 典型干旱荒漠绿洲区耕层土壤养分空间变异[J]. 水土保持通报, 2016, 36(1): 51-56.
|
|
[Wang Xuemei, Chai Zhongping, Wu Hongqi. Spatial variation of soil nutrients in arable layer in typical arid desert oasis area[J]. Bulletin of Soil and Water Conservation, 2016, 36(1): 51-56.]
|
[30] |
周倩倩, 丁建丽, 唐梦迎, 等. 干旱区典型绿洲土壤有机质的反演及影响因素研究[J]. 土壤学报, 2018, 55(2): 313-324.
|
|
[Zhou Qianqian, Ding Jianli, Tang Mengying, et al. Inversion of soil organic matter content in oasis typical of arid areas and its influences factors[J]. Acta Pedologica Sinica, 2018, 55(2): 313-324.]
|
[31] |
罗万银, 董治宝, 钱广强, 等. 戈壁表层沉积物地球化学元素组成及其沉积意义[J]. 中国沙漠, 2014, 34(6): 1441-1453.
doi: 10.7522/j.issn.1000-694X.2014.00110
|
|
[Luo Wanyin, Dong Zhibao, Qian Guangqiang, et al. Geochemical compositions of surface sediments in Gobi desert in northern China and its sedimentary significance[J]. Journal of Desert Research, 2014, 34(6): 1441-1453.]
doi: 10.7522/j.issn.1000-694X.2014.00110
|
[32] |
陈新邦, 唐光木, 张云舒, 等. 不同类型外源碳添加对灰漠土土壤碳储量的影响[J]. 水土保持学报, 2023, 37(3): 330-335.
|
|
[Chen Xinbang, Tang Guangmu, Zhang Yunshu, et al. Effects of different types of exogenous carbon addition on soil carbon storage in grey desert soil[J]. Journal of Soil and Water Conservation, 2023, 37(3): 330-335.]
|
[33] |
Sparks D L, Singh B, Siebecker M G. Environmental Soil Chemistry[M]. Netherlands: Elsevier, 2022.
|
[34] |
高玉峰, 贺字典. 影响土壤真菌多样性的土壤因素[J]. 中国农学通报, 2010, 26(10): 177-181.
|
|
[Gao Yufeng, He Zidian. Study on soil effect factors to fungal diversity in Hebei Province[J]. Chinese Agricultural Science Bulletin, 2010, 26(10) : 177-181.]
|
[35] |
肖方南, 姜梦, 李媛媛, 等. 塔里木河下游柽柳灌丛土壤真菌群落结构及多样性分析[J]. 干旱区地理, 2021, 44(3): 759-768.
|
|
[Xiao Fangnan, Jiang Meng, Li Yuanyuan, et al. Community structure and diversity of soil fungi in Tamarix ramosissima shrubs in the lower reaches of Tarim River[J]. Arid Land Geography, 2021, 44(3): 759-768.]
|
[36] |
Liu B, Hu Y, Wang Y, et al. Effects of saline-alkali stress on bacterial and fungal community diversity in Leymus chinensis rhizosphere soil[J]. Environmental Science and Pollution Research, 2022, 29(46): 70000-70013.
doi: 10.1007/s11356-022-20270-6
|
[37] |
郭成瑾, 张丽荣, 沈瑞清, 等. 宁夏境内腾格里沙漠固沙植物根际土壤真菌多样性研究[J]. 菌物学报, 2017, 36(5): 552-562.
doi: 10.13346/j.mycosystema.160083
|
|
[Guo Chengjin, Zhang Lirong, Shen Ruiqing, et al. Diversity of rhizosphere soil fungi in sand-fixation plants in Tengger Desert in Ningxia Autonomous Region[J]. Mycosystema, 2017, 36(5): 552-562.]
doi: 10.13346/j.mycosystema.160083
|
[38] |
Papizadeh M, Wijayawardene N N, Amoozegar M A, et al. Neocamarosporium jorjanensis, N. persepolisi, and N. solicola spp. nov. (Neocamarosporiaceae, Pleosporales) isolated from saline lakes of Iran indicate the possible halotolerant nature for the genus[J]. Mycological Progress, 2018, 17(25): 661-679.
doi: 10.1007/s11557-017-1341-x
|
[39] |
唐琦勇, 朱静, 楚敏, 等. 北疆盐角草内生真菌群落组成和分布[J]. 干旱区资源与环境, 2021, 35(5): 137-143.
|
|
[Tang Qiyong, Zhu Jing, Chu Min, et al. Community composition and distribution of endophytic fungi in Salicornia europaea from the northern Xinjiang[J]. Journal of Arid Land Resources and Environment, 2021, 35 (5): 137-143.]
|