干旱区研究 ›› 2023, Vol. 40 ›› Issue (1): 152-162.doi: 10.13866/j.azr.2023.01.16 cstr: 32277.14.AZR.20230116
• 生态与环境 • 上一篇
收稿日期:
2022-07-12
修回日期:
2022-09-06
出版日期:
2023-01-15
发布日期:
2023-02-24
作者简介:
刘延雪(1999-),女,硕士研究生,主要从事干旱区蒸散发方面的研究. E-mail: 基金资助:
LIU Yanxue1,2(),QIAO Changlu1,2(
)
Received:
2022-07-12
Revised:
2022-09-06
Published:
2023-01-15
Online:
2023-02-24
摘要:
蒸散发是干旱区农田水循环过程中水分消耗的主要途径,对研究气候变化下干旱区农田耗水规律和制定科学的灌溉制度有重要作用。连续3 a利用大型称重式蒸渗仪监测滴灌棉田蒸散发,设置覆膜与不覆膜对比试验,研究蒸散发过程,分析覆膜和气象因素对蒸散发的影响。结果表明:(1) 在棉花整个生育期内,覆膜与不覆膜滴灌棉田的平均蒸散量分别为292.15 mm和429.22 mm,膜下滴灌的种植方式可以降低31.93%的蒸散量。(2) 蒸散量和蒸散强度在不同生育阶段的大小关系:花铃期>蕾期>吐絮期>苗期。(3) 滴灌棉田在00:00—08:00进行凝结,在08:00—23:00进行蒸散发,蒸散量在午后达到最大值,苗期最大值出现最早,花铃期最大值出现最晚。(4) 蒸散发与风速、辐射、气温呈正相关;与湿度和气压呈负相关。(5) 降雨会促进滴灌棉田蒸散发。总体而言,覆膜可以减少水分蒸散发,有助于提升农业生产过程中的水分利用效率。
刘延雪, 乔长录. 干旱区绿洲膜下滴灌棉田蒸散发[J]. 干旱区研究, 2023, 40(1): 152-162.
LIU Yanxue, QIAO Changlu. Study on evapotranspiration of cotton field under drip irrigation in oasis of arid region[J]. Arid Zone Research, 2023, 40(1): 152-162.
表2
有无地膜覆盖下的滴灌棉田蒸散量"
生育期 | 苗期 | 蕾期 | 花铃期 | 吐絮期 | 合计 | ||
---|---|---|---|---|---|---|---|
2019年 | 蒸散量/mm | 覆膜 | 27.45 | 77.53 | 141.74 | 34.68 | 281.40 |
不覆膜 | 48.65 | 102.98 | 200.45 | 69.92 | 422.00 | ||
蒸散强度/(mm·d-1) | 覆膜 | 0.70 | 2.87 | 3.37 | 0.91 | 1.93 | |
不覆膜 | 1.25 | 3.81 | 4.77 | 1.84 | 2.89 | ||
蒸散量(强度)降低率/% | 43.58 | 24.71 | 29.29 | 50.40 | 33.32 | ||
2020年 | 蒸散量/mm | 覆膜 | 31.83 | 61.95 | 172.71 | 36.42 | 302.91 |
不覆膜 | 60.27 | 81.00 | 240.33 | 65.07 | 446.66 | ||
蒸散强度/(mm·d-1) | 覆膜 | 0.78 | 2.14 | 3.93 | 0.91 | 1.97 | |
不覆膜 | 1.47 | 2.79 | 5.46 | 1.63 | 2.90 | ||
蒸散量(强度)降低率/% | 47.18 | 23.52 | 28.14 | 44.03 | 32.18 | ||
2021年 | 蒸散量/mm | 覆膜 | 24.10 | 41.39 | 173.43 | 53.21 | 292.14 |
不覆膜 | 48.15 | 68.53 | 226.88 | 75.44 | 419.00 | ||
蒸散强度/(mm·d-1) | 覆膜 | 0.75 | 1.53 | 3.85 | 1.33 | 2.03 | |
不覆膜 | 1.50 | 2.54 | 5.04 | 1.89 | 2.91 | ||
蒸散量(强度)降低率/% | 49.95 | 39.60 | 23.56 | 29.46 | 30.28 |
表5
蒸散量与影响因素在日尺度上的相关性"
分析条件 | 风速 | 风向 | 辐射 | 气温 | 湿度 | 气压 | 备注 | |
---|---|---|---|---|---|---|---|---|
苗期 | 覆膜 | 0.833 | 0.823 | 0.828 | 0.839 | -0.590 | -0.572 | P<0.05 |
不覆膜 | 0.815 | 0.780 | 0.884 | 0.787 | -0.434 | -0.731 | ||
蕾期 | 覆膜 | 0.744 | 0.771 | 0.854 | 0.782 | -0.476 | -0.584 | |
不覆膜 | 0.756 | 0.795 | 0.839 | 0.817 | -0.429 | -0.602 | ||
花铃期 | 覆膜 | 0.780 | 0.876 | 0.833 | 0.895 | -0.673 | -0.406 | |
不覆膜 | 0.846 | 0.920 | 0.842 | 0.934 | -0.663 | -0.432 | ||
吐絮期 | 覆膜 | 0.758 | 0.861 | 0.795 | 0.896 | -0.639 | -0.304 | |
不覆膜 | 0.845 | 0.867 | 0.843 | 0.887 | -0.605 | -0.480 |
[1] |
Stocker T F, Raible C C. Climate change: Water cycle shifts gear[J]. Nature, 2005, 434: 830-833.
doi: 10.1038/434830a |
[2] | 刘晓英, 李玉中, 钟秀丽, 等. 基于称重式蒸渗仪实测日值评价16种参考作物蒸散量(ET0)模型[J]. 中国农业气象, 2017, 38(5): 278-291. |
[Liu Xiaoying, Li Yuzhong, Zhong Xiuli, et al. Evaluation of 16 models for reference crop evapotranspiration (ET0) based on daily values of weighing lysimeter measurements[J]. Chinese Journal of Agrometeorology, 2017, 38(5): 278-291.] | |
[3] | 赵文智, 吉喜斌, 刘鹄. 蒸散发观测研究进展及绿洲蒸散研究展望[J]. 干旱区研究, 2011, 28(3): 463-470. |
[Zhao Wenzhi, Ji Xibin, Liu Hu. Progresses in evapotranspiration research and prospect in desert Oasis evapotranspiration research[J]. Arid Zone Research, 2011, 28(3): 463-470.] | |
[4] |
Mccabe M F, Wood E F. Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors[J]. Remote Sensing of Environment, 2006, 105: 271-285.
doi: 10.1016/j.rse.2006.07.006 |
[5] | Dhungel Ramesh, Aiken Robert, Evett Steven R. et al. Energy imbalance and evapotranspiration hysteresis under an advective environment: Evidence from lysimeter, eddy covariance, and energy balance modeling[J]. Geophysical Research Letters, 2021, 48(1): e2020GL091203. |
[6] |
Jamshidi S, Zand-Parsa S, Kamgar-Haghighi A A, et al. Evapotranspiration, crop coefficients, and physiological responses of citrus trees in semi-arid climatic conditions[J]. Agricultural Water Management, 2020, 227: 105838.
doi: 10.1016/j.agwat.2019.105838 |
[7] | Keffer J F, da Silva C C, de Souza A P, et al. Evapotranspiration and water sensitivity of Amazonian yellow ipe seedlings under different shading conditions[J]. Revista Brasileira de Engenharia Agrícolae Ambiental, 2019, 23(10): 733-740. |
[8] |
Vanomark G M M S, Sobrinho José, Bezerra José, et al. Energy balance partitioning and evapotranspiration from irrigated Muskmelon under Semi-Arid Conditions[J]. Bragantia, 2018, 77(1): 168-180.
doi: 10.1590/1678-4499.2016453 |
[9] |
Renner Maik, Brenner Claire, Kaniska Mallick, et al. Using phase lags to evaluate model biases in simulating the diurnal cycle of evapotranspiration: A case study in Luxembourg[J]. Hydrology and Earth System Sciences, 2019, 23(1): 515-535.
doi: 10.5194/hess-23-515-2019 |
[10] | 易珍言. 农田区域蒸散发和土壤含水量协同获取方法研究与应用[D]. 北京: 中国水利水电科学研究院, 2019. |
[Yi Zhenyan. Research and Application of Collaborating Acquisition of Evapotranspiration and Surface Soil Moisture over Irrigated Area[D]. Beijing: China Institute of Water Resources & Hydropower Research, 2019.] | |
[11] |
Li Siyi, Li Yi, Lin Haixia, et al. Effects of different mulching technologies on evapotran spiration and summer maize growth[J]. Agricultural Water Management, 2018, 201: 309-318.
doi: 10.1016/j.agwat.2017.10.025 |
[12] | Ai Pengrui, Ma Yingjie. Estimation of evapotranspiration of a Jujube/Cotton intercropping system in an Arid Area based on the dual crop coefficient method[J]. Agriculture, 2020, 10(3): 10030065. |
[13] | 吴程. 干旱区绿洲膜下滴灌棉田蒸散量与作物系数研究[D]. 阿拉尔: 塔里木大学, 2016. |
[Wu Cheng. Study on Evapotranspiration and Crop Coefficient of Cotton with Drip Irrigation under Mulch in Arid Oasis[D]. Alaer: Tarim University, 2016.] | |
[14] | 刘净贤, 周石硚, 晋绿生, 等. 新疆北部膜下滴灌棉田的蒸散特征[J]. 干旱区研究, 2012, 29(2): 360-368. |
[Liu Jingxian, Zhou Shiqiao, Jin Lusheng, et al. Evapotranspiration of a film-mulched cotton field under drip irrigation in North Xinjiang[J]. Arid Zone Research, 2012, 29(2): 360-368.] | |
[15] | 中华人民共和国水利部. 灌溉试验规范(SL 13-2004)[S]. 北京: 中国水利水电出版社, 2004. |
[Ministry of Water Resources of the People’s Republic of China. Irrigation Experiment Standard(SL 13-2004)[S]. Beijing: China Water & Power Press, 2004.] | |
[16] | 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 微灌工程技术规范(GB/T 50485-2009)[S]. 北京: 中国计划出版社, 2009. |
[Ministry of Housing and Urban Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Technical Code for Microirrigation Engineering(GB/T 50485-2009)[S]. Beijing: China Planning Press, 2009.] | |
[17] |
Falge E, Baldocchi D, Olson R, et al. Gap filling strategies for long term energy flux data sets[J]. Agricultural and Forest Meteorology, 2001, 107(1): 71-77.
doi: 10.1016/S0168-1923(00)00235-5 |
[18] | Smith M. Report on the Expert Consultation on Revision of FAO Methodologies for Crop Water Requirement[R]. FAO Rome, 1991. |
[19] | 季辰, 朱忠礼, 徐自为. 高精度称量式蒸渗仪数据处理方法研究[J]. 北京师范大学学报(自然科学版), 2016, 52(5): 628-634. |
[Ji Chen, Zhu Zhongli, Xu Ziwei. Data processing of high precision weighing lysimeter[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(5): 628-634.] | |
[20] | 郭斌, 李卫红, 郝兴明, 等. 极端干旱区不同下垫面土壤凝结水试验研究[J]. 地理科学进展, 2012, 31(9): 1171-1179. |
[Guo Bin, Li Weihong, Hao Xingming, et al. Measurements of soil condensation water on different types of underlying surfaces in extreme Arid Region[J]. Processing in Geography, 2012, 31(9): 1171-1179.] | |
[21] | 李洪波. 半干旱区凝结水形成机制及对植物水分特性的影响[D]. 呼和浩特: 内蒙古农业大学, 2010. |
[Li Hongbo. Formation Mechanism of Condensation Water and It’s Effects on the Moisture Characteristics of Plant in Semi-arid Area[D]. Hohhot: Inner Mongolia Agricultural University, 2010.] | |
[22] |
Scherm H, Van Bruggen A H C, Sensitivity of simulated dew duration to meteorological variations in different climatic regions of California[J]. Agricultural and Forest Meteorology, 1993, 66(3-4): 229-245.
doi: 10.1016/0168-1923(93)90073-Q |
[23] |
庄艳丽, 赵文智. 干旱区凝结水研究进展[J]. 地球科学进展, 2008, 23(1): 31-38.
doi: 10.11867/j.issn.1001-8166.2008.01.0031 |
[Zhuang Yanli, Zhao Wenzhi. Advances in the condensation water of Arid Regions[J]. Advances in Earth Science, 2008, 23(1): 31-38.]
doi: 10.11867/j.issn.1001-8166.2008.01.0031 |
|
[24] | 郭晓楠, 查天山, 贾昕, 等. 典型沙生灌木生态系统凝结水量估算[J]. 北京林业大学学报, 2016, 38(10): 80-87. |
[Guo Xiaonan, Zha Tianshan, Jia Xin, et al. Estimation of dewfall amount in a typical desert shrub ecosystem[J]. Journal of Beijing Forestry University, 2016, 38(10): 80-87.] | |
[25] | 谢今范, 韦小丽, 张晨琛, 等. 第二松花江流域实际蒸散发的时空变化特征和影响因素[J]. 生态学杂志, 2013, 32(12): 3336-3343. |
[Xie Jinfan, Wei Xiaoli, Zhang Chenchen, et al. Spatiotemporal variation characteristics and related affecting factors of actual evapotranspiration in the second tributary of the Songhua and River basin, Northeast China[J]. Chinese Journal of Ecology, 2013, 32(12): 3336-3343.] | |
[26] |
Zhang Zhaolu, Kang Hui, Yao Yunjun, et al. Spatialand decadal variations in satellite-based terrestrial evapotranspiration and drought over Inner Mongolia Autonomous Region of China during 1982-009[J]. Journal of Earth System Science, 2017, 126(8): 119.
doi: 10.1007/s12040-017-0885-0 |
[27] |
Ai Zhipin, Yang Yonghui, Wang Qinxue, et al. Characteristics and influencing factors of crop coefficient for drip-irrigated cotton under plastic-mulched condition in arid environment[J]. Journal of Agricultural Meteorology, 2018, 74(1): 1-8.
doi: 10.2480/agrmet.D-16-00020 |
[28] | 刘云飞, 孙怀卫, 桂东伟. 基于PT-Fi模型的新疆地区实际蒸散发计算及其气候环境因子的响应[J]. 水资源与水工程学报, 2020, 31(4): 193-198. |
[Liu Yunfei, Sun Huaiwei, Gui Dongwei. Actual evapotranspiration estimation of Xinjiang based on PT-Fi model and its responses of climatic and environmental factors[J]. Journal of Water Resources & Water Engineering, 2020, 31(4): 193-198.] | |
[29] | 王小军, 黄健. 膜下滴灌模式下种植密度对棉田蒸散发规律影响研究[J]. 沙漠与绿洲气象, 2020, 14(1): 138-143. |
[Wang Xiaojun, Huang Jian. Effect of planting density on evapotranspiration of cotton field with drip irrigation under mulch[J]. Desert and Oasis Meteorology, 2020, 14(1): 138-143.] | |
[30] | 李战超. 干旱区膜下滴灌棉田蒸散量研究[D]. 乌鲁木齐: 新疆师范大学, 2013. |
[Li Zhanchao. Study of Evapotranspiration under Cotton in Plastic Film Using Drip Irrigation in the Arid Areas[D]. Urumqi: Xinjiang Normal University, 2013.] | |
[31] | Rana G, Katerji N. Measurement and estimation of actual evaporation in the field under Mediterranean climate: A review[J]. European Journal of Agonomy, 2000, 13(2): 125-153. |
[32] | 潘杉杉, 梁杏, 刘延锋, 等. 覆膜棉田蒸散发日变化规律及其影响因子分析[J]. 安全与环境工程, 2018, 25(5): 1-8. |
[Pan Shanshan, Liang Xing, Liu Yanfeng, et al. Daily variation of evapotranspiration rate and its influencing factors in a cotton field under mulch[J]. Safety and Environmental Engineering, 2018, 25(5): 1-8.] |
[1] | 吕壮壮, 乔庆庆, 董孙艺, 汪冬. 中中新世气候适宜期全球变暖背景下亚洲内陆干旱区古气候演化特征及驱动机制[J]. 干旱区研究, 2024, 41(8): 1309-1322. |
[2] | 王怡雯, 马瑶瑶, 史培军, 张钢锋. 干旱区光伏电站运营对局地生态环境的影响[J]. 干旱区研究, 2024, 41(8): 1423-1433. |
[3] | 龙威夷, 施建飞, 李双媛, 孙金金, 王玉刚. 流域绿洲土壤盐分多模型反演效果评估[J]. 干旱区研究, 2024, 41(7): 1120-1130. |
[4] | 姚小晨, 高凡, 韩方红, 何兵. 2000—2020年阿克苏河流域土地利用强度变化及其对蒸散发的影响[J]. 干旱区研究, 2024, 41(6): 951-963. |
[5] | 叶虎, 裴浩, 姜艳丰, 那庆, 张立伟. 内蒙古半干旱区气溶胶散射特性及影响因素[J]. 干旱区研究, 2024, 41(5): 730-741. |
[6] | 雷菲亚, 李小双, 陶冶, 尹本丰, 荣晓莹, 张静, 陆永兴, 郭星, 周晓兵, 张元明. 西北干旱区藓类结皮覆盖下土壤多功能性特征及影响因子[J]. 干旱区研究, 2024, 41(5): 812-820. |
[7] | 袁萍, 韩欢, 赵红梅, 李从娟. 裸露与沙埋对极端干旱区凋落物分解和养分释放的影响[J]. 干旱区研究, 2024, 41(2): 293-300. |
[8] | 杨楠, 宋孝玉, 邓建伟, 李蓝君, 赵新凯, 孟鹏飞, 符冲, 魏婉茵, 张育斌, 丁林, 李浩霖. 基于改进S-W模型的南小河沟流域蒸散发分配及控制机制[J]. 干旱区研究, 2024, 41(11): 1819-1830. |
[9] | 张寿川, 赵春涛, 安亚涛, 刘凯, 余冬梅, 陈亮, 李庆宽, 王建萍. 那棱格勒河流域氢氧同位素特征及其指示意义[J]. 干旱区研究, 2024, 41(11): 1853-1863. |
[10] | 汪翔, 吕海深, 朱永华, 郭晨煜. 两种河道洪水演进方法在新疆山区的应用比较[J]. 干旱区研究, 2023, 40(8): 1240-1247. |
[11] | 赵卓怡, 郝兴明. 基于Priestley-Taylor方法的中亚干旱区实际蒸散特征及归因[J]. 干旱区研究, 2023, 40(7): 1085-1093. |
[12] | 吕锦心, 梁康, 刘昌明, 张仪辉, 刘璐. 无定河流域土地覆被空间分异机制及相关水碳变量变化[J]. 干旱区研究, 2023, 40(4): 563-572. |
[13] | 石建周, 刘贤德, 田青, 于澎涛, 王彦辉. 六盘山半干旱区华北落叶松林坡面土壤含水量的降雨响应[J]. 干旱区研究, 2023, 40(4): 594-604. |
[14] | 康利刚, 曹生奎, 曹广超, 杨羽帆, 严莉, 王有财. 青海湖沙柳河流域蒸散发时空变化特征[J]. 干旱区研究, 2023, 40(3): 358-372. |
[15] | 吴万民, 刘涛, 陈鑫. 西北干旱半干旱区NDVI季节性变化及其影响因素[J]. 干旱区研究, 2023, 40(12): 1969-1981. |
|