干旱区研究 ›› 2022, Vol. 39 ›› Issue (6): 1930-1941.doi: 10.13866/j.azr.2022.06.23
庞海威1(),余殿2,任成宝2,张玉1,郑彩之1,郭佳诚1,边振1(),桑国庆1
收稿日期:
2022-04-20
修回日期:
2022-08-23
出版日期:
2022-11-15
发布日期:
2023-01-17
通讯作者:
边振
作者简介:
庞海威(1999-),男,硕士研究生,主要从事生态遥感及水文水资源方面研究. E-mail: 基金资助:
PANG Haiwei1(),YU Dian2,REN Chengbao2,ZHANG Yu1,ZHENG Caizhi1,GUO Jiacheng1,BIAN Zhen1(),SANG Guoqing1
Received:
2022-04-20
Revised:
2022-08-23
Online:
2022-11-15
Published:
2023-01-17
Contact:
Zhen BIAN
摘要:
以宁夏哈巴湖国家级自然保护区为研究区域,对区域尺度上典型植物群落遥感提取信息进行研究,验证基于多时相Landsat 8数据对该地区植物群落提取的适用性。在最佳指数因子的基础上,确定最优波段组合;同时结合面向对象的分类方法,对比分析采用单期影像与2期影像不同波段组合的共计8组分类实验,探究多时相数据对分类精度的影响。结果表明:(1) 不同分割参数设置对分类精度有一定影响,紧致度因子和形状因子分别在0.7和0.1时,达到实验最优分类效果;(2) 研究区内人工大面积种植的植被,其分类效果较好,白刺、芨芨草等天然混生的植物群落容易造成误分混分;(3) 由最终分类精度可知,采用多时相数据进行分类可大大提高分类精度,较单时相数据总体分类精度和Kappa系数最大提升了8.24%和0.10,可有效提高研究区植被信息的提取精度。
庞海威,余殿,任成宝,张玉,郑彩之,郭佳诚,边振,桑国庆. 宁夏东部半干旱区典型植物群落遥感分类特征[J]. 干旱区研究, 2022, 39(6): 1930-1941.
PANG Haiwei,YU Dian,REN Chengbao,ZHANG Yu,ZHENG Caizhi,GUO Jiacheng,BIAN Zhen,SANG Guoqing. Remote sensing classification characteristics of typical plant communities in the semi-arid areas of eastern Ningxia[J]. Arid Zone Research, 2022, 39(6): 1930-1941.
表3
植物群落分类"
植被 | 群系组 | 群落型 |
---|---|---|
植被 | 盐生灌丛 | 白刺群落(Nitraria tangutorum) |
丛生禾草盐生草甸 | 芨芨草群落(Achnatherum splendens) | |
沙地落叶灌丛及半灌丛 | 柠条群落(Caragana microphylla) | |
黑沙蒿群落(Artemisia desertorum) | ||
沙地人工落叶灌木林 | 沙柳群落(Salix cheilophila.) | |
盐碱地人工落叶灌木林 | 柽柳群落(Tamarix chinensis) | |
人工寒温性针叶松林 | 樟子松群落(Pinus sylvestris var. mongolica) | |
人工温性落叶阔叶林 | 杨树群落(Populus ) | |
榆树群落(Ulmus pumila) |
表5
OIF值前10排名组合"
OIF值排序 | 波段组合 | 标准差和 | 相关系数和 | OIF |
---|---|---|---|---|
1 | 4、5、7 | 3363.75 | 2.60 | 1293.63 |
2 | 5、6、7 | 3389.62 | 2.69 | 1261.78 |
3 | 4、5、6 | 3196.66 | 2.65 | 1206.68 |
4 | 4、6、7 | 3440.88 | 2.92 | 1179.95 |
5 | 3、5、7 | 3023.22 | 2.62 | 1153.20 |
6 | 2、5、7 | 2774.02 | 2.56 | 1082.91 |
7 | 3、6、7 | 3100.36 | 2.89 | 1071.73 |
8 | 3、4、5 | 2830.26 | 2.66 | 1065.43 |
9 | 3、5、6 | 2856.13 | 2.68 | 1064.29 |
10 | 1、5、7 | 2721.39 | 2.57 | 1058.27 |
表7
E组实验分类结果混淆矩阵"
实际地类 | 参考地类 | 用户精度 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
白刺 | 芨芨草 | 柽柳 | 盐爪爪 | 沙柳 | 柠条 | 榆树 | 樟子松 | 黑沙蒿 | 其他 | 水体 | ||
白刺 | 43 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 91.67 |
芨芨草 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 100 |
柽柳 | 0 | 0 | 43 | 0 | 0 | 33 | 0 | 0 | 1 | 0 | 0 | 92.10 |
盐爪爪 | 0 | 0 | 0 | 34 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 91.90 |
沙柳 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
柠条 | 0 | 0 | 0 | 0 | 1 | 15 | 8 | 4 | 3 | 0 | 0 | 48.39 |
榆树 | 0 | 0 | 0 | 0 | 2 | 5 | 16 | 1 | 0 | 0 | 0 | 66.67 |
樟子松 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 100 |
黑沙蒿 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 3 | 41 | 0 | 0 | 87.23 |
其它 | 9 | 2 | 0 | 0 | 3 | 10 | 0 | 2 | 2 | 119 | 2 | 79.87 |
水体 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 24 | 96.00 |
生产精度 | 70.97 | 90.32 | 92.10 | 100 | 75.00 | 46.88 | 66.67 | 60.00 | 87.23 | 95.20 | 92.30 | |
总体精度:83.98% Kappa系数:0.81 |
[1] | 尼加提·卡斯木, 师庆东, 刘素红, 等. 基于卷积网络的沙漠腹地绿洲植物群落自动分类方法[J]. 农业机械学报, 2019, 50(1): 217-225. |
[ Nijat Kasim, Shi Qingdong, Liu Suhong, et al. Automatic classification method of oasis plant community in desert hinterland based on VGGNet and ResNet models[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1): 217-225. ] | |
[2] | 邬亚娟, 刘廷玺, 童新, 等. 基于面向对象的干旱半干旱地区植被分类[J]. 干旱区研究, 2020, 37(4): 1026-1034. |
[ Wu Yajuan, Liu Tingxi, Tong Xin, et al. Vegetation classification in arid and semi-arid areas using an object-oriented method[J]. Arid Zone Research, 2020, 37(4): 1026-1034. ] | |
[3] | 张贵花, 王瑞燕, 赵庚星, 等. 基于物候参数和面向对象法的濒海生态脆弱区植被遥感提取[J]. 农业工程学报, 2018, 34(4): 209-216. |
[ Zhang Guihua, Wang Ruiyan, Zhao Gengxing, et al. Extraction of vegetation information in coastal ecological vulnerable areas from remote sensing data based on phenology parameters and object-oriented method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(4): 209-216. ] | |
[4] | 刘润红, 梁士楚, 赵红艳, 等. 中国滨海湿地遥感研究进展[J]. 遥感技术与应用, 2017, 32(6): 998-1011. |
[ Liu Runhong, Liang Shichu, Zhao Hongyan, et al. Progress of Chinese Coastal Wetland based on remote sensing[J]. Remote Sensing Technology and Application, 2017, 32(6): 998-1011. ] | |
[5] | 陈仲新, 任建强, 唐华俊, 等. 农业遥感研究应用进展与展望[J]. 遥感学报, 2016, 20(5): 748-767. |
[ Chen Zhongxin, Ren Jianqiang, Tang Huajun, et al. Progress and perspectives on agricultural remote sensing research and applications in China[J]. Journal of Remote Sensing, 2016, 20(5): 748-767. ] | |
[6] |
Tang Lina, Shao Guofan. Drone remote sensing for forestry research and practices[J]. Journal of Forestry Research, 2015, 26(4): 791-797.
doi: 10.1007/s11676-015-0088-y |
[7] | 王鹏, 万荣荣, 杨桂山. 基于多源遥感数据的湿地植物分类和生物量反演研究进展[J]. 湿地科学, 2017, 15(1): 114-124. |
[ Wang Peng, Wan Rongrong, Yang Guishan. Advance in classification and biomass estimation of plants in wetlands based on multi-source remote sensing data[J]. Wetland Science, 2017, 15(1): 114-124. ] | |
[8] |
徐凯健, 田庆久, 岳继博, 等. 基于多光谱影像的森林树种识别及其空间尺度响应[J]. 应用生态学报, 2018, 29(12): 3986-3994.
doi: 10.13287/j.1001-9332.201812.011 |
[ Xu Kaijian, Tian Qingjiu, Yue Jibo, et al. Forest tree species identification and its response to spatial scale based on multispectral and multi-resolution remotely sensed data[J]. Chinese Journal of Applied Ecology, 2018, 29(12): 3986-3994. ]
doi: 10.13287/j.1001-9332.201812.011 |
|
[9] | Brewer C K, Barber J A, Willhauck G, et al. Multi-source and multi-classifier system for regional landcover mapping[J]. Advances in Techniques for Analysis of Remotely Sensed Data, 2003 : 143-149. |
[10] | Bross L C. Using Landsat TM Imagery to Monitor Vegetation Change Following Flow Restoration to the Lower Owens River, California[D]. California: Portland State University, 2015. |
[11] | 付伟, 徐涵秋, 王美雅, 等. 南方红壤典型水土流失区植被分类及植被类型变化的遥感评估——以福建省长汀县河田地区为例[J]. 遥感技术与应用, 2017, 32(3): 546-555. |
[ Fu Wei, Xu Hanqiu, Wang Meiya, et al. Vegetation classification and variation assessment in a typical red soil erosion area in southern China: Hetian, changting country of Fujian Province[J]. Remote Sensing Technology and Application, 2017, 32(3): 546-555. ] | |
[12] | 章晓洁, 邓艳芬, 张亚超, 等. 利用Sentinel-2A多光谱成像仪与Landsat 8陆地成像仪影像进行普陀山岛植被分类效果比较[J]. 测绘通报, 2019(10) : 97-100. |
[ Zhang Xiaojie, Deng Yanfen, Zhang Yachao, et al. Comparison of vegetation classification performances on Putuoshan island using Sentinel-2A MSI and Landsat 8 OLI images[J]. Bulletin of Surveying and Mapping, 2019(10): 97-100. ] | |
[13] | 朱永森, 曾永年, 张猛. 基于HJ卫星数据与面向对象分类的土地利用/覆盖信息提取[J]. 农业工程学报, 2017, 33(14): 258-265. |
[ Zhu Yongsen, Zeng Yongnian, Zhang Meng. Extract of land use/cover information based on HJ satellites data and object-oriented classification[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(14): 258-265. ] | |
[14] | 张猛, 曾永年, 朱永森. 面向对象方法的时间序列MODIS数据湿地信息提取——以洞庭湖流域为例[J]. 遥感学报, 2017, 21(3): 479-492. |
[ Zhang Meng, Zeng Yongnian, Zhu Yongsen. Wetland mapping of Donting Lake Basin based on time-series MODIS data and object-oriented method[J]. Journal of Remote Sensing, 2017, 21(3): 479-492. ] | |
[15] | 马燕妮, 明冬萍, 杨海平. 面向对象影像多尺度分割最大异质性参数估计[J]. 遥感学报, 2017, 21(4): 566-578. |
[ Ma Yanni, Ming Dongping, Yang Haiping. Scale estimation of object-oriented image analysis based on spectral-spatial statistics[J]. Journal of Remote Sensing, 2017, 21(4): 566-578. ] | |
[16] |
任传帅, 叶回春, 崔贝, 等. 基于面向对象分类的芒果林遥感提取方法研究[J]. 资源科学, 2017, 39(8): 1584-1591.
doi: 10.18402/resci.2017.08.14 |
[ Ren Chuanshuai, Ye Huichun, Cui Bei, et al. Acreage estimation of mango orchards using object-oriented classification and remote sensing[J]. Resources Science, 2017, 39(8): 1584-1591. ]
doi: 10.18402/resci.2017.08.14 |
|
[17] |
Douglas G, Goodin. Mapping land cover and land use from object-based classification: an example from a complex agricultural landscape[J]. International Journal of Remote Sensing, 2015, 36(18): 4702-4723.
doi: 10.1080/01431161.2015.1088674 |
[18] | 向海燕, 罗红霞, 刘光鹏, 等. 基于Sentinel-1A极化SAR数据与面向对象方法的山区地表覆被分类[J]. 自然资源学报, 2017, 32(12): 2136-2148. |
[ Xiang Haiyan, Luo Hongxia, Liu Guangpeng, et al. Land cover classification in mountain areas based on Sentinel-1A polarimetric SAR data and object oriented method[J]. Journal of Nature Resources, 2017, 32(12): 2136-2148. ] | |
[19] | 姚金玺, 王浪, 李建忠, 等. 青海诺木洪地区多源遥感及多特征组合地物分类[J]. 农业工程学报, 2022, 38(3): 247-256. |
[ Yao Jinxi, Wang Lang, Li Jianzhong, et al. Multi-source remote sensing and multi-feature combination ground object classification in Nuomuhong areas, Qinghai Province of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(3): 247-256. ] | |
[20] |
罗开盛. 基于面向对象技术的旅游用地遥感识别[J]. 中国科学院大学学报, 2020, 37(4): 490-497.
doi: 10.7523/j.issn.2095-6134.2020.04.008 |
[ Luo Kaisheng. Remote sensing identification of tourism land use based on object-oriented technology[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(4): 490-497. ]
doi: 10.7523/j.issn.2095-6134.2020.04.008 |
|
[21] | Iabchoon S, Wongsai S, Chankon K. Mapping urban impervious surface using object-based image analysis with WorldView-3 satellite imagery[J]. Journal of Applied Remote Sensing, 2017, 11: 046015. |
[22] | 马梦茹, 张永彬, 王奕丹. 最佳波段选择的迁西县土地利用信息提取研究[J]. 华北理工大学学报(自然科学版), 2021, 43(3): 20-29. |
[ Ma Mengru, Zhang Yongbin, Wang Yidan. Research on extraction of land utilization information of Qianxi County based on optimum band selection[J]. Journal of North China University of Seience and Technology(Natural Science Edition), 2021, 43(3): 20-29. ] | |
[23] | 彭佳忆, 王新军, 朱磊, 等. 基于无人机影像的荒漠地表类型信息提取[J]. 干旱区研究, 2019, 36(3): 771-780. |
[ Peng Jiayi, Wang Xinjun, Zhu Lei, et al. Information extraction of desert surface types based on UVA Image[J]. Arid Zone Research, 2019, 36(3): 771-780. ] | |
[24] | 王芳, 杨武年, 王建, 等. 遥感影像多尺度分割中最优尺度的选取及评价[J]. 遥感技术与应用, 2020, 35(3): 623-633. |
[ Wang Fang, Yang Wunian, Wang Jian, et al. Selection and evaluation of the optimal scale in multiscale segmentation of remote sensing images[J]. Remote Sensing Technology and Application, 2020, 35(3): 623-633. ] | |
[25] | 陈喜梅, 王庆国, 王一斐, 等. eCognition在西藏全区草原普查遥感影像信息快速提取中的应用[J]. 中国草地学报, 2017, 39(2): 117-120. |
[ Chen Ximei, Wang Qingguo, Wang Yifei, et al. Application of eCognition to rapidly extract the information form remote sensing image of grassland general investigation in Tibet region[J] .Chinese Journal of Grassland, 2017, 39(2): 117-120. ] | |
[26] | 郑琪, 邸苏闯, 潘兴瑶, 等. 基于Rapid Eye数据的北京生态涵养区土地利用分类及变化研究[J]. 遥感技术与应用, 2020, 35(5): 1118-1126. |
[ Zheng Qi, Di Suchuang, Pan Xingyao, et al. Study of land use classification and changes in the ecological conservation region of Beijing based on Rapid Eye images[J]. Remote Sensing Technology and Application, 2020, 35(5): 1118-1126. ] | |
[27] | 袁磊, 赵俊三, 陈国平, 等. 面向对象的土地利用多尺度时空数据模型[J]. 测绘科学, 2014, 39(11): 52-56, 71. |
[ Yuan Lei, Zhao Junsan, Chen Guoping, et al. An object-oriented multi-scale spatio-temporal data model for land-use[J]. Science of Surveying and Mapping, 2014, 39(11): 52-56, 71. ] | |
[28] | 宋奇, 史舟, 冯春晖, 等. 基于1990—2019年多时相影像的干旱区绿洲景观格局分析[J]. 干旱区研究, 2022, 39(2): 594-604. |
[ Song Qi, Shi Zhou, Feng Chunhui, et al. Analysis of landscape pattern from 1990 to 2019 based on multi-temporal imagery in arid oasis[J]. Arid Zone Research, 2022, 39(2): 594-604. ] |
[1] | 王理德, 宋达成, 李广宇, 赵赫然, 郑克文. 双龙沟矸石治理过程中植物群落演替及物种多样性研究[J]. 干旱区研究, 2023, 40(8): 1294-1303. |
[2] | 张泽宇, 吴晓静, 梁一鹏, 张晓霞, 查同刚. 乌拉山废弃矿山生态恢复的近自然植被空间配置模式[J]. 干旱区研究, 2023, 40(7): 1164-1171. |
[3] | 石建周, 刘贤德, 田青, 于澎涛, 王彦辉. 六盘山半干旱区华北落叶松林坡面土壤含水量的降雨响应[J]. 干旱区研究, 2023, 40(4): 594-604. |
[4] | 吴万民, 刘涛, 陈鑫. 西北干旱半干旱区NDVI季节性变化及其影响因素[J]. 干旱区研究, 2023, 40(12): 1969-1981. |
[5] | 赵明涛, 王超群, 梁美琪, 何彤慧. 银川平原湿地典型沉水植物群落物种多样性对底泥的响应[J]. 干旱区研究, 2023, 40(11): 1815-1823. |
[6] | 李星,辛智鸣,董雪,李永华,段瑞兵,马媛,李星,李宽. 敦煌北山及马鬃山地区植物群落β多样性及其解释[J]. 干旱区研究, 2022, 39(5): 1464-1472. |
[7] | 刘帅楠,李广,宋良翠,袁建钰,谢明君,魏星星. 早播及耕作措施对黄土高原半干旱区春小麦土壤氮磷元素的影响[J]. 干旱区研究, 2021, 38(5): 1367-1375. |
[8] | 周静,严成,郭瑞增,闫紫烟. 干旱砾漠区防护绿地植物群落配置模式研究[J]. 干旱区研究, 2021, 38(3): 812-820. |
[9] | 张安宁,刘任涛,陈蔚,常海涛,吉雪茹. 干旱区气候因子对枯落物分解和土壤动物的影响[J]. 干旱区研究, 2021, 38(3): 867-874. |
[10] | 张鹏,李颖,王业林,宋承承,高芳磊,解李娜,马成仓. 短脚锦鸡儿灌丛对植物群落和土壤微生物群落的促进效应研究[J]. 干旱区研究, 2021, 38(2): 421-428. |
[11] | 赵领娣, 冯剑, 孙凌霄, 于翔, 赵鹏. 中国西北干旱区城市水、大气污染排放与FDI关系研究 [J]. 干旱区研究, 2020, 37(1): 67-73. |
[12] | 李晓媛, 于德永. 蒸散发估算方法及其驱动力研究进展[J]. 干旱区研究, 2020, 37(1): 26-36. |
[13] | 江世高,尚振艳,牛得草,张宝林,张斯莲,傅华. 贺兰山西坡草地植物多样性与其叶片C∶N∶P计量比的关系[J]. 干旱区研究, 2014, 31(3): 523-529. |
[14] | 周洪建,王曦 ,袁艺,王丹丹. 半干旱区极端强降雨灾害链损失快速评估方法——以甘肃岷县“5·10”特大山洪泥石流灾害为例[J]. 干旱区研究, 2014, 31(3): 440-445. |
[15] | 蒋德明,张娜,阿拉木萨,周全来,王永翠,苗仁辉,押田敏雄. 科尔沁沙地人工固沙植被优化配置模式试验研究[J]. 干旱区研究, 2014, 31(1): 149-156. |
|