干旱区研究 ›› 2025, Vol. 42 ›› Issue (10): 1913-1924.doi: 10.13866/j.azr.2025.10.14 cstr: 32277.14.AZR.20251014

• 生态与环境 • 上一篇    下一篇

新疆伊宁市臭氧污染特征、气象影响及潜在源分析

陈新(), 刘云庆, 王兴磊()   

  1. 伊犁师范大学资源与环境学院,污染物化学与环境治理重点实验室,新疆 伊宁 835000
  • 收稿日期:2025-01-22 修回日期:2025-04-03 出版日期:2025-10-15 发布日期:2025-10-22
  • 通讯作者: 王兴磊. E-mail: wangxl1127@sina.com
  • 作者简介:陈新(1997-),男,硕士,初级工程师,主要从事环境污染物分析. E-mail: 632215456@qq.com
  • 基金资助:
    伊犁师范大学污染物化学与环境治理重点实验室开放课题一般项目(JY2025001901);伊犁州科技局项目(YZ2022Y005);新疆维吾尔自治区自然科学基金(2018D01C009)

Analysis of ozone pollution characteristics, meteorological influences, and potential sources in Yining, Xinjiang

CHEN Xin(), LIU Yunqing, WANG Xinglei()   

  1. Key Laboratory of Pollutant Chemistry and Environmental Treatment, School of Resources and Environment, Yili Normal University, Yining 835000, Xinjiang, China
  • Received:2025-01-22 Revised:2025-04-03 Published:2025-10-15 Online:2025-10-22

摘要:

为了解伊宁市O3污染特征及潜在污染源,基于2022年伊宁市各站点O3监测数据及同期气象资料,结合全球资料同化系统数据建立后向轨迹模型(HYSPLIT),结合潜在源贡献分析法(PSCF)和浓度权重轨迹分析法(CWT)进行研究。结果表明:2022年伊宁市6月O3浓度最高,12月浓度最低。以全球空气质量指南(AQG-2021)限值为标准,各站点浓度高峰期O3平均值分别为限值的1.97倍、1.98倍和1.88倍。O3质量浓度与边界层高度和气温呈正相关关系、与湿度和气压变化呈负相关关系。O3日内峰值出现在17:00—18:00,太阳辐射峰值则出现在14:00。O3与太阳辐射日变化趋势一致,均为单峰形日变化特征,受其形成机制影响O3浓度峰值出现时刻晚于太阳辐射峰值时间3~4 h。HYSPLIT模型显示影响伊宁市O3气流轨迹主要来自哈萨克斯坦的南哈萨克斯坦州,江布尔州和阿拉木图州。PSCF分析发现,春季伊犁州尼勒克与新源县交界处,境外哈萨克斯坦乌恰拉尔与乌尔贾尔区交界处;夏季阿克苏市的温宿县、库车市和巴州的轮台地区,以及哈萨克斯坦江布尔州南部为O3的外来重度贡献源区。CWT结果表明,春季伊犁州的尼勒克县东部地区;夏季新源县东部,巩留、特克斯和巴州和静县西北地区,以及阿拉木图州西南边境为O3的外来浓度贡献高值区。研究结果可为伊犁地区分析O3的污染来源提供参考。

关键词: 臭氧, 污染特征, 后向轨迹, 潜在源贡献分析, 浓度权重轨迹

Abstract:

To investigate the characteristics of ozone (O3) pollution and its potential sources in Yining City, this study analyzed O3 monitoring data from multiple stations in 2022, combined with meteorological observations and Global Data Assimilation System data. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model was employed for backward trajectory analysis, supplemented by Potential Source Contribution Function (PSCF) and Concentration-Weighted Trajectory (CWT) methods. The results indicated that the highest monthly O3 concentrations occurred in June 2022, while the lowest occurred in December. During peak seasons, the average O3 concentrations at the monitoring stations exceeded the WHO Air Quality Guidelines limit by factors of 1.97, 1.98, and 1.88, respectively. O3 mass concentrations showed positive correlations with the boundary layer height and temperature, while being negatively correlated with the humidity and atmospheric pressure. Diurnal variation analysis revealed that O3 peaks occurred between 17:00 and 18:00 local time, lagging 3-4 h behind the solar radiation maximum observed at 14:00, demonstrating a unimodal diurnal pattern consistent with photochemical formation mechanisms. HYSPLIT trajectory analysis identified dominant air mass origins from the South Kazakhstan, Zhambyl, and Almaty regions of Kazakhstan. PSCF results highlighted significant transboundary contribution zones during spring, including border areas between Nileke and Xinyuan counties in Ili Prefecture, and the Uzbekistan-Kazakhstan border near Usharal and Urzhar. Summer high-contribution areas encompassed Wensu and Kuqa counties in Aksu Prefecture, Luntai County in Bayingol Prefecture, and the southern Zhambyl region of Kazakhstan. CWT analysis identified high-concentration contribution zones in eastern Nileke County in spring and in eastern Xinyuan County, Gongliu-Tekes counties, northwestern Hejing County, and the southwestern Almaty border region in summer. These findings provide a valuable reference for the apportionment of regional O3 pollution sources in Ili River Valley.

Key words: ozone, pollution characterisation, backward trajectory, analysis of potential source contributions, concentration weighting trajectory