[1] |
Li K W, Chen L H, Ying F, et al. Meteorological and chemical impacts on ozone formation: A case study in Hangzhou, China[J]. Atmospheric Research, 2017, 196: 40-52.
|
[2] |
崔梦瑞, 白林燕, 冯建中, 等. 京津唐地区臭氧时空分布特征与气象因子的关联性研究[J]. 环境科学学报, 2021, 41(2): 373-385.
|
|
[Cui Mengrui, Bai Lingyan, Feng Jianzhong, et al. Analysis of temporal and spatial variations of ozone coupling with dynamics of meteorological factors in the Beijing-Tianjin-Tangshan region[J]. Acta Scientiae Circumstantiae, 2021, 41(2): 373-385. ]
|
[3] |
高冉, 李琴, 车飞, 等. 京津冀地区2015—2020年臭氧浓度时空分布特征及其健康效益评估[J]. 环境科学, 2024, 45(5): 2525-2536.
|
|
[Gao Ran, Li Qin, Che Fei, et al. Spatial and temporal distribution characteristics of ozone concentration and health benefit assessment in the Beijing-Tianjin-Hebei Region from 2015 to 2020[J]. Environmental Science, 2024, 45(5): 2525-2536. ]
|
[4] |
赵楠, 卢毅敏. 中国地表臭氧浓度估算及健康影响评估[J]. 环境科学, 2022, 43(3): 1235-1245.
|
|
[Zhao Nan, Lu Yimin. Estimation of surface ozone concentration and health impact assessment in China[J]. Environmental Science, 2022, 43(3): 1235-1245. ]
|
[5] |
曾贤刚, 阮芳芳, 姜艺婧. 中国臭氧污染的空间分布和健康效应[J]. 中国环境科学, 2019, 39(9): 4025-4032.
|
|
[Zeng Xiangang, Ruan Fangfang, Jiang Yijing. Spatial distribution and health effects of ozone pollution in China[J]. China Environmental Science, 2019, 39(9): 4025-4032. ]
|
[6] |
王凤娟. 大气PM2.5和臭氧复合污染特征及气象成因研究[J]. 环境科学与管理, 2023, 48(10): 150-155.
|
|
[Wang Fengjuan. Analysis on characteristics and meteorological causes for combined pollution of atmospheric PM2.5 and ozone[J]. Environmental Science and Management, 2023, 48(10): 150-155. ]
|
[7] |
冯浩鹏, 康平, 张文倩, 等. 四川盆地夏季区域性持续性臭氧过程垂直变化差异及气象成因[J]. 环境科学学报, 2023, 43(4): 14-26.
|
|
[Feng Haopeng, Kang Ping, Zhang Wenqian, et al. Vertical variation and meteorological causes of regional persistent ozone processes over Sichuan Basin during summer[J]. Acta Scientiae Circumstantiae, 2023, 43(4): 14-26. ]
|
[8] |
林鑫, 仝纪龙, 王伊凡, 等. 基于CMAQ和HYSPLIT模式的日照市夏季臭氧污染成因和来源分析[J]. 环境科学, 2023, 44(6): 3098-3107.
|
|
[Lin Xin, Tong Jilong, Wang Yifan, et al. Analysis of causes and sources of summer ozone pollution in Rizhao based on CMAQ and HYSPLIT models[J]. Environmental Science, 2023, 44(6): 3098-3107. ]
|
[9] |
赵旭辉, 张付海, 王含月, 等. 合肥市典型臭氧污染特征及成因分析[J]. 中国环境监测, 2022, 38(4): 90-103.
|
|
[Zhao Xuhui, Zhang Fuhai, Wang Hanyue, et al. Typical characteristics and causes of the ozone pollution process in Hefei[J]. Environmental Monitoring in China, 2022, 38(4): 90-103. ]
|
[10] |
胡亚男, 王佳, 徐丽娜, 等. 内蒙古近地面臭氧污染时空分布特征及气象条件分析[J]. 中国环境监测, 2022, 38(5): 65-72.
|
|
[Hu Yanan, Wang Jia, Xu Lina, et al. Analysis of meteorological conditions and temporal and spatial distribution characteristics of ground-level ozone pollution in Inner Mongolia[J]. Environmental Monitoring in China, 2022, 38(5): 65-72. ]
|
[11] |
肖凯, 任学昌, 陈仁华. 嘉峪关市大气污染物传输特征与潜在源分析[J]. 环境工程, 2021, 39(9): 92-101.
|
|
[Xiao Kai, Ren Xuechang, Chen Renhua. Analysis of transmission characteristics and potential sources of air pollutants in Jiayuguan[J]. Environmental Engineering, 2021, 39(9): 92-101. ]
|
[12] |
宋小涵, 燕丽, 刘伟, 等. 2015—2021年京津冀及周边地区PM2.5和臭氧复合污染时空特征分析[J]. 环境科学, 2023, 44(4): 1841-1851.
|
|
[Song Xiaohan, Yan Li, Liu Wei, et al. Spatiotemporal distribution characteristics of co-pollution of PM2.5 and ozone over BTH with surrounding area from 2015 to 2021[J]. Environmental Science, 2023, 44(4): 1841-1851. ]
|
[13] |
郭云飞, 包云轩, 沈利洪, 等. 苏州市近地面臭氧时空分布特征及模拟分析[J]. 环境科学与技术, 2022, 45(7): 66-77.
|
|
[Guo Yunfei, Bao Yunxuan, Shen Lihong, et al. Spatial-temporal distribution characteristics and simulation analysis of subaerial ozone in Suzhou City[J]. Environmental Science & Technology, 2022, 45(7): 66-77. ]
|
[14] |
肖建军, 汪太明, 王业耀, 等. 中国自然背景地区臭氧浓度时空变化特征分析[J]. 环境科学研究, 2022, 35(9): 2128-2135.
|
|
[Xioa Jianjun, Wang Taimin, Wang Yeyao, et al. Analysis of ozone time series variation in atmospheric background area in China[J]. Research of Environmental Sciences, 2022, 35(9): 2128-2135. ]
|
[15] |
周炎, 张涛, 林玉君, 等. 珠三角城市群甲醛的时空分布、来源及其对臭氧生成的影响[J]. 环境化学, 2022, 41(7): 2356-2363.
|
|
[Zhou Yan, Zhang Tao, Lin Yujun, et al. The characteristics and source of formaldehyde in the Pearl River Delta and its impact on ozone formation[J]. Environmental Chemistry, 2022, 41(7): 2356-2363. ]
|
[16] |
柯碧钦, 何超, 杨璐, 等. 华北地区地表臭氧时空分布特征及驱动因子[J]. 中国环境科学, 2022, 42(4): 1562-1574.
|
|
[Ke Biqin, He Chao, Yang Lu, et al. The spatiotemporal variation of surface ozone and the main driving factors in North China[J]. China Environmental Science, 2022, 42(4): 1562-1574. ]
|
[17] |
于玉洁, 杨臣强, 杨瑞, 等. 石家庄市城区春季VOCs污染特征及来源解析[J]. 环境科学, 2023, 45(8): 4459-4469.
|
|
[Yu Yujie, Yang Chenqiang, Yang Rui, et al. Pollution characteristics and source apportionment of VOCs in urban areas of Shijiazhuang in spring[J]. Environmental Science, 2023, 45(8): 4459-4469. ]
|
[18] |
汪庆, 骆慧晓, 孟文芳, 等. 邯郸市PM2.5和O3污染特征及潜在源分析[J]. 环境科学学报, 2023, 43(4): 53-69.
|
|
[Wang Qing, Luo Huixiao, Meng Wenfang, et al. Analysis of characteristics and potential sources of PM2.5 and O3 pollution in Handan[J]. Acta Scientiae Circumstantiae, 2023, 43(4): 53-69. ]
|
[19] |
Wang Y F, Tong J L, Chen Y X, et al. Analysis of O3 Sources in Yulin City in summer based on WRF-CMAQ/ISAM Model[J]. Huan Jing Ke Xue, 2023, 44(7): 3676-3684.
|
[20] |
Qi H Y, Duan W J, Cheng S Y, et al. O3 transport characteristics in eastern China in 2017 and 2021 based on complex networks and WRF-CMAQ-ISAM[J]. Chemosphere, 2023, 337: 139258.
|
[21] |
Wang Y J, Jiang S, Huang L, et al. Differences between VOCs and NOx transport contributions, their impacts on O3, and implications for O3 pollution mitigation based on CMAQ simulation over the Yangtze River Delta, China[J]. The Science of the Total Environment, 2023, 872: 162118.
|
[22] |
Zeng X X, Han M J, Ren G, et al. A comprehensive investigation on source apportionment and multi-directional regional transport of volatile organic compounds and ozone in urban Zhengzhou[J]. Chemosphere, 2023, 334: 139001.
|
[23] |
Zhang S X, Zhang Z Z, Li Y, et al. Formation processes and source contributions of ground level ozone in urban and suburban Beijing using the WRF CMAQ modelling system[J]. Journal of Environmental Sciences, 2023, 127: 753-766.
|
[24] |
王蕾, 孜比布拉·司马义, 杨胜天, 等. 北疆主要城市的大气污染状况分析[J]. 干旱区资源与环境, 2018, 32(6): 182-186.
|
|
[Wang Lei, Zibibula Simayi, Yang Shengtian, et al. Analysis on the air pollution status of major cities in northern Xinjiang[J]. Journal of Arid Land Resources and Environment, 2018, 32(6): 182-186. ]
|
[25] |
巩庆, 范金霞, 林卫, 等. 2014—2015年新疆库尔勒市空气质量的时空分布特征[J]. 沙漠与绿洲气象, 2017, 11(5): 77-82.
|
|
[Gong Qing, Fan Jinxia, Lin Wei, et al. Spatial and temporal distribution of air quality levels and primary pollutant in Korla City, Xinjiang[J]. Desert and Oasis Meteorology, 2017, 11(5): 77-82. ]
|
[26] |
Simayi M, Shi Y Q, Xi Z Y, et al. Emission trends of industrial VOCs in China since the clean air action and future reduction perspectives[J]. Science of the Total Environment, 2022, 826: 153-994.
|
[27] |
谢运兴, 唐晓, 郭宇宏, 等. 新疆大气颗粒物的时空分布特征[J]. 中国环境监测, 2019, 35(1): 26-36.
|
|
[Xie Yunxing, Tang Xiao, Guo Yuhong, et al. Spatial and temporal distribution of atmospheric particulate matter in Xinjiang[J]. Environmental Monitoring in China, 2019, 35(1): 26-36. ]
|
[28] |
汤三玲. 近40年新疆气温和降水的时空变化特征[D]. 成都: 四川师范大学, 2021.
|
|
[Tang Sanling. Spatiotemporal Variations of the Temperature and Precipitation in Xinjiang during the Past 40 Years[D]. Chengdu: Sichuan Normal University, 2021. ]
|
[29] |
刘子龙, 代斌, 崔卓彦, 等. 大气污染物浓度变化特征及潜在源分析——以乌鲁木齐为例[J]. 干旱区研究, 2021, 38(2): 562-569.
doi: 10.13866/j.azr.2021.02.28
|
|
[Liu Zilong, Dai Bin, Cui Zhuoyan, et al. Concentration characteristics and potential source of atmospheric pollutants: A case study in Urumqi[J]. Arid Zone Research, 2021, 38(2): 562-569. ]
doi: 10.13866/j.azr.2021.02.28
|
[30] |
Chen Z, Chen D, Zhao C, et al. Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism[J]. Environment International, 2020, 139(C): 105558.
|
[31] |
Lei Y, Zhang X L, Kang P, et al. Analysis of transport pathways and potential sources of atmospheric particulate matter in Zigong, in south of Sichuan Province[J]. Environmental Science, 2020, 417: 3021-3030.
|
[32] |
Hao T, Cai Z, Chen S, et al. Transport pathways and potential source regions of PM2.5 on the west coast of Bohai Bay during 2009-2018[J]. Atmosphere, 2019, 10(6): 345-355.
|
[33] |
王帅, 林宏, 王佳楠, 等. 沈阳地区冬季空气颗粒物输送路径及潜在源分析[J]. 环境保护科学, 2021, 47(1): 80-86.
|
|
[Wang Shuai, Lin Hong, Wang Jianan, et al. Analysis of the transport path and potential source of air particles in Shenyang during the winter[J]. Environmental Protection Science, 2021, 47(1): 80-86. ]
|
[34] |
刘旻霞, 孙瑞弟, 宋佳颖, 等. 基于OMI数据的新疆地区臭氧柱浓度研究[J]. 中国环境科学, 2021, 41(4): 1498-1510.
|
|
[Liu Minxia, Sun Ruidi, Song Jiaying, et al. Research on ozone column concentration in Xinjiang based on OMI data[J]. China Environmental Science, 2021, 41(4): 1498-1510. ]
|
[35] |
Wang Z Y, Duan X J, Liang T, et al. Analysis of spatiotemporal distribution characteristics and socioeconomic drivers of urban air quality in China[J]. Chemosphere, 2022, 291: 132799.
|
[36] |
Li K, Daniel J, Liao H, et al. Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China[J]. Environmental Sciences, 2019, 116(2): 422-427.
|
[37] |
Wang W J, Parrish D D, Li X, et al. Exploring the drivers of the increased ozone production in Beijing in summertime during 2005-2016[J]. Atmospheric Chemistry and Physics, 2020, 20(24): 15617-15633.
|
[38] |
Atkinson-Palombo M C, Miller A J, Balling C R. Quantifying the ozone “weekend effect” at various locations in Phoenix, Arizona[J]. Atmospheric Environment, 2006, 40(39): 7644-7658.
|
[39] |
Fujita E M, Stockwell W R, Campbell D E, et al. Evolution of the magnitude and spatial extent of the weekend ozone effect in California’s South Coast Air Basin, 1981-2000[J]. Journal of the Air & Waste Management Association, 2003, 53(7): 802-815.
|
[40] |
王笠成, 邵波霖, 彭彤茵, 等. 基于PSCF与CWT模型对乌鲁木齐市地表臭氧源区分析[J]. 环境科学与技术, 2023, 46(10): 129-137.
|
|
[Wang Licheng, Shao Bolin, Peng Tongyin, et al. Analysis of land-surface ozone source-areas in Urumqi City based on PSCF and CWT models[J]. Environmental Science & Technology, 2023, 46(10): 129-137. ]
|
[41] |
李婷苑, 陈靖扬, 龚宇, 等. 2022年广东省冬季一次臭氧污染过程的气象成因及潜在源区分析[J]. 环境科学, 2023, 44(7): 3695-3704.
|
|
[Li Tingyuan, Chen Jingyang, Gong Yu, et al. Meteorological formation mechanisms and potential sources of an ozone pollution process in winter of 2022 in Guangdong Province[J]. Environmental Science, 2023, 44(7): 3695-3704. ]
|