干旱区研究 ›› 2024, Vol. 41 ›› Issue (12): 2083-2093.doi: 10.13866/j.azr.2024.12.10 cstr: 32277.14.AZR.20241210
收稿日期:
2024-06-03
修回日期:
2024-10-16
出版日期:
2024-12-15
发布日期:
2024-12-20
通讯作者:
韩立新. E-mail: 308372367@qq.com作者简介:
杨晓娟(1987-),女,硕士,高级工程师,主要从事水土保持方面的研究. E-mail: sxwncc@126.com
基金资助:
YANG Xiaojuan1,2(), HAN Lixin1,2(), LYU Chao1,2
Received:
2024-06-03
Revised:
2024-10-16
Published:
2024-12-15
Online:
2024-12-20
摘要:
为明晰黄河流域不同植被干旱指数对气候变化的空间响应特征,选取2003—2022年的植被状态指数(VCI)、植被健康指数(VHI)、温度植被干旱指数(TVDI)与降水、温度、蒸散发数据,结合趋势分析、空间通径分析及多层感知机(MLP)回归分析,探究黄河流域3种植被干旱指数的时空变化特征,揭示气候因子对黄河流域植被干旱状态的直接影响、间接影响和综合影响。结果表明:(1) 20 a内VCI、VHI呈波动上升趋势,TVDI增减趋势不明显;空间上以温带-暖温带界限为分割,东南方向TVDI与西北方向VHI降低趋势明显。(2) 降水对VCI、温度对TVDI的直接促进作用最强,降水对TVDI、温度对VHI的间接作用最强;TVDI主要受降水的抑制作用,VCI、VHI主要受温度的促进作用。(3) 3种植被干旱指数均与降水、温度呈负相关关系,与潜在蒸散发量呈正相关关系;影响TVDI的主要影响特征为潜在蒸散发量,影响VCI、VHI的最主要影响因素为温度;VHI最适用于黄河流域的植被干旱状态判定。研究结果可为黄河流域干旱状况评估及治理提供理论依据。
杨晓娟, 韩立新, 吕超. 环境条件对黄河流域植被干旱状态的影响特征分析[J]. 干旱区研究, 2024, 41(12): 2083-2093.
YANG Xiaojuan, HAN Lixin, LYU Chao. Analysis of the influence of environmental conditions on the vegetation drought index in the Yellow River Basin[J]. Arid Zone Research, 2024, 41(12): 2083-2093.
表1
数据来源及预处理信息"
数据名称 | 时间分辨率(2003—2022年) | 空间分辨率 | 原始空间 分辨率 | 数据 格式 |
---|---|---|---|---|
温度植被干旱指数(TVDI) | 年 | 1 km×1 km | 1 km×1 km | TIF |
植被状态指数(VCI) | 年 | 1 km×1 km | 1 km×1 km | TIF |
植被健康指数(VHI) | 年 | 1 km×1 km | 1 km×1 km | TIF |
逐月平均气温(TMP) | 月 | 1 km×1 km | 55 km×55 km | TIF |
逐月降水量(PRE) | 月 | 1 km×1 km | 55 km×55 km | TIF |
逐月潜在蒸散发(PET) | 月 | 1 km×1 km | - | TIF |
黄河流域边界 | - | - | - | SHP |
[1] | 姚玉璧, 张存杰, 邓振镛, 等. 气象、农业干旱指标综述[J]. 干旱地区农业研究, 2007, 25(1): 185-189, 211. |
[Yao Yubi, Zhang Cunjie, Deng Zhenyong, et al. Overview of meteorological and agricultural drought indices[J]. Agricultural Research in the Arid Areas, 2007, 25(1): 185-189, 211. ] | |
[2] |
高秉丽, 巩杰, 李焱, 等. 基于SPEI的黄河流域多尺度干湿特征分析[J]. 干旱区研究, 2022, 39(3): 723-733.
doi: 10.13866/j.azr.2022.03.06 |
[Gao Bingli, Gong Jie, Li Yan, et al. Analysis of multi-scalar characteristics of dry and wet conditions in the Yellow River Basin based on SPEI[J]. Arid Zone Research, 2022, 39(3): 723-733. ]
doi: 10.13866/j.azr.2022.03.06 |
|
[3] | American Meteorological Society. Meteorological drought-policy statement[J]. Bulletin of American Meteorological Society, 1997, 78: 847-849. |
[4] | 张乐园, 王弋, 陈亚宁. 基于SPEI指数的中亚地区干旱时空分布特征[J]. 干旱区研究, 2020, 37(2): 331-340. |
[Zhang Leyuan, Wang Yi, Chen Yaning. Study on drought evolution characteristics and teleconnection driving forces based on vegetation condition index in China[J]. Arid Zone Research, 2020, 37(2): 331-340. ] | |
[5] | 王飞, 王宗敏, 杨海波, 等. 基于SPEI的黄河流域干旱时空格局研究[J]. 中国科学: 地球科学, 2018, 48(9): 1169-1183. |
[Wang Fei, Wang Zongmin, Yang Haibo, et al. Study of the temporal and spatial patterns of drought in the Yellow River study of the temporal and spatial patterns of drought in the Yellow River[J]. Scientia Sinica (Terrae), 2018, 48(9): 1169-1183. ] | |
[6] | 钱正安, 吴统文, 宋敏红, 等. 干旱灾害和我国西北干旱气候的研究进展及问题[J]. 地球科学进展, 2001, 16(1): 28-38. |
[Qian Zhengan, Wu Tongwen, Song Minhong, et al. Arid disaster and advances in arid climate researches over northwest China[J]. Advances in Earth Science, 2001, 16(1): 28-38. ]
doi: 10.11867/j.issn.1001-8166.2001.01.0028 |
|
[7] | 张强, 张良, 崔显成, 等. 干旱监测与评价技术的发展及其科学挑战[J]. 地球科学进展, 2011, 26(7): 763-778. |
[Zhang Qiang, Zhang Liang, Cui Xiancheng, et al. Progresses and challenges in drought assessment and monitoring[J]. Advances in Earth Science, 2011, 26(7): 763-778. ] | |
[8] | 陈仕豪, 门宝辉, 庞金凤, 等. 基于集成方法重构黄河流域非平稳气象干旱时空特征[J/OL]. 水力发电学报: 1-12 [2024-03-17]. |
[Chen Shihao, Men Baohui, Pang Jinfeng, et al. Temporal and spatial evolution of reconstructed non-stationary meteorological drought in the Yellow River basin using integrated methods[J/OL]. Journal of Hydroelectric Engineering: 1-12 [2024-03-17]. ] | |
[9] | 张强, 姚玉璧, 李耀辉, 等. 中国干旱事件成因和变化规律的研究进展与展望[J]. 气象学报, 2020, 78(3): 500-521. |
[Zhang Qiang, Yao Yubi, Li Yaohui, et al. Progress and prospect on the study of causes and variation regularity of droughts in China[J]. Acta Meteorologica Sinica, 2020, 78(3): 500-521. ] | |
[10] | Kogan F, Sullivan J. Development of global drought-watch system using NOAA/AVHRR data[J]. Advances in Space Research, 1993, 13(5): 219-222. |
[11] | 李维娇, 王云鹏. 基于VCI的2003—2017年广东省干旱时空变化特征分析[J]. 华南师范大学学报(自然科学版), 2020, 52(3): 85-91. |
[Li Weijiao, Wang Yunpeng. An analysis of the spatial-temporal characteristics of drought in Guangdong based on vegetation condition index from 2003 to 2017[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(3): 85-91. ] | |
[12] | 张强, 高歌. 我国近50年旱涝灾害时空变化及监测预警服务[J]. 科技导报, 2004(7): 21-24. |
[Zhang Qiang, Gao Ge. The spatial and temporal features of drought and flood disasters in the past 50 years and monitoring and warning services in China[J]. Science & Technology Review, 2004(7): 21-24. ] | |
[13] | 王锦杰, 陈昊, 张莹, 等. 基于植被健康指数的2001—2018年间江苏省农业干旱时空分析[J]. 江苏农业科学, 2020, 48(6): 223-231. |
[Wang Jinjie, Chen Hao, Zhang Ying, et al. Spatial and temporal analysis of agricultural drought in Jiangsu Province from 2001 to 2018 based on vegetation health index[J]. Jiangsu Agricultural Sciences, 2020, 48(6): 223-231. ] | |
[14] | Kogan Felix N. Operational space technology for global vegetation assessment[J]. Bulletin of the American Meteorological Society, 2001, 82(9): 1949-1964. |
[15] | Sandholt Inge, Rasmussen Kjeld, Andersen Jens. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of environment, 2002, 79(2-3): 213-224. |
[16] | 牟伶俐, 吴炳方, 闫娜娜, 等. 农业旱情遥感指数验证与不确定性分析[J]. 水土保持通报, 2007, 27(2): 119-122. |
[Mu Lingli, Wu Bingfang, Yan Nana, et al. Validation of agricultural drought indices and their uncertainty analysis[J]. Bulletin of Soil and Water Conservation, 2007, 27(2): 119-122. ] | |
[17] | 徐明立, 王飞, 徐菲, 等. 基于植被状态指数的中国干旱演变特征及遥相关驱动研究[J]. 水电能源科学, 2024, 42(4): 20-24, 19. |
[Xu Mingli, Wang Fei, Xu Fei, et al. Study on drought evolution characteristics and teleconnection driving forces based on vegetation condition index in China[J]. Water Resources and Power, 2024, 42(4): 20-24, 19. ] | |
[18] |
向大享, 姜莹, 陈喆, 等. 基于SPI和VHI的长江中下游地区干旱时空特征分析[J]. 长江科学院院报, 2024, 41(3): 153-159, 165.
doi: 10.11988/ckyyb.20230196 |
[Xiang Daxiang, Jiang Ying, Chen Zhe, et al. Spatial-temporal characteristics of historical drought in the middle and lower reaches of Yangtze River based on standardized precipitation index and vegetation health index[J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(3): 153-159, 165. ] | |
[19] | 李新尧, 杨联安, 聂红梅, 等. 基于植被状态指数的陕西省农业干旱时空动态[J]. 生态学杂志, 2018, 37(4): 1172-1180. |
[Li Xinyao, Yang Lianan, Nie Hongmei, et al. Assessment of temporal and spatial dynamics of agricultural drought in Shaanxi Province based on vegetation condition index[J]. Chinese Journal of Ecology, 2018, 37(4): 1172-1180. ] | |
[20] | 翟盘茂, 邹旭恺. 1951—2003年中国气温和降水变化及其对干旱的影响[J]. 气候变化研究进展, 2005, 1(1): 16-18. |
[Zhai Panmao, Zou Xukai. Changes in Temperature and precipitation and their impacts on drought in China during 1951-2003[J]. Climate Change Research, 2005, 1(1): 16-18. ] | |
[21] | 江善虎, 任明明, 章二子, 等. 基于非平稳GEV模型的黄河源区枯季径流演变特征分析[J]. 河海大学学报(自然科学版), 2023, 51(2): 1-7, 63. |
[Jiang Shanhu, Ren Mingming, Zhang Erzi, et al. Study on evolution characteristics of dry season runoff using a non-stationary GEV model in Source Region of the Yellow River[J]. Journal of Hohai University (Natural Sciences), 2023, 51(2): 1-7, 63. ] | |
[22] |
张志强, 刘欢, 左其亭, 等. 2000—2019年黄河流域植被覆盖度时空变化[J]. 资源科学, 2021, 43(4): 849-858.
doi: 10.18402/resci.2021.04.18 |
[Zhang Zhiqiang, Liu Huan, Zuo Qiting, et al. Spatiotemporal change of fractional vegetation cover in the Yellow River Basin during 2000-2019[J]. Resources Science, 2021, 43(4): 849-858. ]
doi: 10.18402/resci.2021.04.18 |
|
[23] | 薛联青, 王文壮, 刘远洪, 等. 黄河流域植被总初级生产力对持续性干旱水分亏缺的响应[J]. 水资源保护, 2024, 40(3): 44-51. |
[Xue Lianqing, Wang Wenzhuang, Liu Yuanhong, et al. Response of gross primary productivity of vegetation to persistent drought-induced water deficit in the Yellow River Basin[J]. Water Resources Protection, 2024, 40(3): 44-51. ] | |
[24] | 杨泽康, 田佳, 李万源, 等. 黄河流域生态环境质量时空格局与演变趋势[J]. 生态学报, 2021, 41(19): 7627-7636. |
[Yang Zekang, Tian Jia, Li Wanyuan, et al. Spatio-temporal pattern and evolution trend of ecological environment quality in the Yellow River Basin[J]. Acta Ecologica Sinica, 2021, 41(19): 7627-7636. ] | |
[25] | 黎云云, 畅建霞, 樊晶晶, 等. 气候和土地利用变化下黄河流域农业干旱时空演变及驱动机制[J]. 农业工程学报, 2021, 37(19): 84-93. |
[Li Yunyun, Chang Jianxia, Fan Jingjing, et al. Agricultural drought evolution characteristics and driving mechanisms in the Yellow River Basin under climate and land use changes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(19): 84-93. ] | |
[26] |
陈令仪, 朱秀芳, 唐谊娟, 等. 黄河流域气象水文干旱时滞效应与影响因素分析[J]. 地理科学, 2023, 43(10): 1861-1868.
doi: 10.13249/j.cnki.sgs.2023.10.017 |
[Chen Lingyi, Zhu Xiufang, Tang Yijuan, et al. Time lag effect and influencing factors of meteorological and hydrological drought in the Yellow River Basin[J]. Scientia Geographica Sinica, 2023, 43(10): 1861-1868. ]
doi: 10.13249/j.cnki.sgs.2023.10.017 |
|
[27] | Senyanzobe J M V, Mulei Josephine M, Bizuru Elias, et al. Impact of Pteridium aquilinum on vegetation in Nyungwe Forest, Rwanda[J]. Heliyon, 2020, 6(9): e04806. |
[28] | 乔龙鑫, 郑泽琳, 马晓岩, 等. 2003—2021年黄河流域逐月1 km分辨率VCI和TCI干旱指标数据集[J]. 中国科学数据(中英文网络版), 2023, 8(2): 223-233. |
[Qiao Longxin, Zheng Zelin, Ma Xiaoyan, et al. A dataset of monthly VCI and TCI drought indices at a resolution of 1 km in the Yellow River Basin (2003-2021)[J]. China Scientific Data, 2023, 8(2): 223-233. ] | |
[29] | 梁守真, 王猛, 韩冬锐, 等. TVDI与土壤湿度关系的多时间尺度分析与旱情监测[J]. 水土保持研究, 2024, 31(2): 149-157. |
[Liang Shouzhen, Wang Meng, Han Dongrui, et al. Analysis of relationship between temperature vegetation dryness index and soil moisture at multiple temporal scales and drought monitoring[J]. Research of Soil and Water Conservation, 2024, 31(2): 149-157. ] | |
[30] | 夏浩铭. 黄河流域TCI、VCI、VHI、TVDI逐年1 km分辨率数据集(2003-2022年)[DB/OL]. 国家冰川冻土沙漠科学数据中心, 2023. |
[Xia Haoming. A dataset of annual TCI, VCI, VHI and TVDI with the resolution of 1 km in the Yellow River Basin (2003-2022)[DB/OL]. National Cryosphere Desert Data Center, 2023. ] | |
[31] | 沙寅涛, 刘戈, 赵晓阳, 等. 2003—2022年黄河流域TCI、VCI、VHI、TVDI逐年1 km分辨率数据集[J]. 中国科学数据(中英文网络版), 2024, 9(2): 166-180. |
[Sha Yintao, Liu Yi, Zhao Xiaoyang, et al. A dataset of annual TCI, VCI, VHI and TVDI with the resolution of 1 km in the Yellow River Basin (2003-2022)[J]. China Scientific Data, 2024, 9(2): 166-180. ] | |
[32] | 彭守璋. 中国1 km分辨率逐月平均气温数据集(1901—2021)[DB/OL]. 时空三极环境大数据平台, 2019. |
[Peng Shouzhang. 1 km monthly mean temperature dataset for China (1901-2021)[DB/OL]. A Big Earth Data Platform for Three Poles, 2019. ] | |
[33] | Zhao Xiaoyan, Xia Haoming, Liu Baoying, et al. Spatiotemporal comparison of drought in Shaanxi-Gansu-Ningxia from 2003 to 2020 using various drought indices in google earth engine[J]. Remote Sensing, 2022, 14(7): 1570. |
[34] | 唐丽霞. 黄土高原清水河流域土地利用/气候变异对径流泥沙的影响[D]. 北京: 北京林业大学, 2009. |
[Tang Lixia. Effects of Landuse/Climate Variability on the Runoff and Sediment in Qingshuihe Watershed on the Loess Plateau, West Shanxi Province, China[D]. Beijing: Beijing Forestry University, 2009. ] | |
[35] | 黄河流域水土保持基础边界数据集[DB/OL]. 国家冰川冻土沙漠科学数据中心, 2018. |
[Basic boundary data set of soil and water conservation in the Yellow River Basin[DB/OL]. National Cryosphere Desert Data Center, 2018. ] | |
[36] | Liu Qionghuan, Wang Xiuhong, Zhang Yili, et al. Vegetation degradation and its driving factors in the farming-pastoral ecotone over the countries along Belt and Road Initiative[J]. Sustainability, 2019, 11(6): 1590. |
[37] | 郭仲平. 数量遗传分析[M]. 北京: 北京师范学院出版社, 1986. |
[Guo Zhongping. Quantitative Characters Genetic Analysis[M]. Beijing: Beijing Normal University Publishing House, 1986. ] | |
[38] |
谢舒笛, 莫兴国, 胡实, 等. 三北防护林工程区植被绿度对温度和降水的响应[J]. 地理研究, 2020, 39(1): 152-165.
doi: 10.11821/dlyj020181071 |
[Xie Shudi, Mo Xingguo, Hu Shi, et al. Responses of vegetation greenness to temperature and precipitation in the Three-North Shelter Forest Program[J]. Geographical Research, 2020, 39(1): 152-165. ] | |
[39] | 胡波, 陈丽华. 黄土高原不同林地土壤水分特征及影响因子通径分析[J]. 中国水土保持科学(中英文), 2021, 19(1): 79-86. |
[Hu Bo, Chen Lihua. Characteristics of soil moisture and path analysis of influencing factors on different forest lands on the Loess Plateau[J]. Science of Soil and Water Conservation, 2021, 19(1): 79-86. ] | |
[40] | 王雄, 张翀, 李强. 黄土高原植被覆盖与水热时空通径分析[J]. 生态学报, 2023, 43(2): 719-730. |
[Wang Xiong, Zhang Chong, Li Qiang. Path analysis between vegetation coverage and climate factors in the Loess Plateau[J]. Acta Ecologica Sinica, 2023, 43(2): 719-730. ] | |
[41] | 徐勇, 盘钰春, 邹滨, 等. 定量评估气候变化对长江中下游地区植被GPPGS变化的影响[J]. 环境科学, 2024, 45(3): 1615-1628. |
[Xu Yong, Pan Yuchun, Zou Bin, et al. Quantitative assessment of the impact of climate change on the growing season of vegetation gross primary productivity in the middle and lower reaches of the Yangtze River[J]. Environmental Science, 2024, 45(3): 1615-1628. ] | |
[42] | 张秀梅, 马波, 张怡捷. 基于机器学习的东非植被变化因子重要性分析[J]. 水土保持通报, 2023, 43(6): 227-236. |
[Zhang Xiumei, Ma Bo, Zhang Yijie. Importance analysis of vegetation change factors in East Africa based on machine learning[J]. Bulletin of Soil and Water Conservation, 2023, 43(6): 227-236. ] | |
[43] | 刘俊文, 谢劭峰, 钟雁琴, 等. 基于MLP神经网络的中国南方地区多因子PWV预测模型[J]. 中国科技论文, 2024, 19(1): 99-107, 122. |
[Liu Junwen, Xie Shaofeng, Zhong Yanqin, et al. A multi-factor PWV prediction model based on MLP neural network for southern China[J]. China Sciencepaper, 2024, 19(1): 99-107, 122. ] | |
[44] | 张世虎, 王一峰, 侯勤正, 等. 青海省干旱指标时空变化特征与气候指数的关系[J]. 草业科学, 2015, 32(12): 1980-1987. |
[Zhang Shihu, Wang Yifeng, Hou Qinzheng, et al. Spatial and temporal characteristics of aridity index and association with AO and ENSO in Qinghai Province[J]. Pratacultural Science, 2015, 32(12): 1980-1987. ] | |
[45] | 尹国应, 张洪艳, 张良培. 2001—2019年长江中下游农业干旱遥感监测及植被敏感性分析[J]. 武汉大学学报(信息科学版), 2022, 47(8): 1245-1256, 1270. |
[Yin Guoying, Zhang Hongyan, Zhang Liangpei. Remote sensing monitoring of agricultural drought and vegetation sensitivity analysis in the middle and lower reaches of the Yangtze River from 2001 to 2019[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1245-1256, 1270. ] | |
[46] |
袁文平, 周广胜. 干旱指标的理论分析与研究展望[J]. 地球科学进展, 2004, 19(6): 982-991.
doi: 10.11867/j.issn.1001-8166.2004.06.0982 |
[Yuan Wenping, Zhou Guangsheng. The oratical study and research prospect on drought indices[J]. Advances in Earth Science, 2004, 19(6): 982-991. ] | |
[47] | 巩杰, 高秉丽, 李焱, 等. 1960—2020年黄河流域气候干湿状况时空分异及变化趋势[J]. 中国农业气象, 2022, 43(3): 165-176. |
[Gong Jie, Gao Bingli, Li Yan, et al. Spatiotemporal variation of climate dry-wet condition and its potential trend in the Yellow River Basin from 1960 to 2020[J]. Chinese Journal of Agrometeorology, 2022, 43(3): 165-176. ] | |
[48] | Wang Fei, Wang Zongming, Yang Haibo, et al. Copula-based drought analysis using Standardized Precipitation Evapotranspiration Index: A case study in the Yellow river basin, China[J]. Water, 2019, 11(6): 1298. |
[49] | Sidor Cristian Gheorghe, Popa Ionel, Vlad Radu, et al. Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania)[J]. Trees, 2015, 29(4): 985-997. |
[50] | Shi Shangyu, Yu Jingjie, Wang Fei, et al. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau[J]. Science of the Total Environment, 2021, 755: 142419. |
[1] | 张巧凤, 于红博, 黄方. 蒙古高原干旱时空特征及对植被物候的累积影响[J]. 干旱区研究, 2024, 41(9): 1548-1559. |
[2] | 袁征, 张志高, 闫瑾, 刘嘉毅, 胡柱钰, 王赟, 蔡茂堂. 1960—2020年黄河流域不同等级降水时空特征[J]. 干旱区研究, 2024, 41(8): 1259-1271. |
[3] | 吕壮壮, 乔庆庆, 董孙艺, 汪冬. 中中新世气候适宜期全球变暖背景下亚洲内陆干旱区古气候演化特征及驱动机制[J]. 干旱区研究, 2024, 41(8): 1309-1322. |
[4] | 吴思源, 郝利娜. 2001—2021年黄河流域植被覆盖变化及其驱动因素[J]. 干旱区研究, 2024, 41(8): 1373-1384. |
[5] | 张宏伟, 别强, 石莹, 苏晓杰, 李欣璋. 黄河流域上游植被覆盖变化特征及其影响因素[J]. 干旱区研究, 2024, 41(8): 1385-1394. |
[6] | 王怡雯, 马瑶瑶, 史培军, 张钢锋. 干旱区光伏电站运营对局地生态环境的影响[J]. 干旱区研究, 2024, 41(8): 1423-1433. |
[7] | 李烨, 江伟, 陈晓俊, 吴英杰, 王思楠. 基于降水量距平百分率的1961—2020年鄂尔多斯气象干旱趋势[J]. 干旱区研究, 2024, 41(7): 1099-1111. |
[8] | 龙威夷, 施建飞, 李双媛, 孙金金, 王玉刚. 流域绿洲土壤盐分多模型反演效果评估[J]. 干旱区研究, 2024, 41(7): 1120-1130. |
[9] | 张斌, 李从娟, 易光平, 刘冉. 梭梭和头状沙拐枣形态及生理生化特性对干旱胁迫的响应[J]. 干旱区研究, 2024, 41(7): 1177-1184. |
[10] | 李冰洁, 范志韬, 曲芷程, 姚顺予, 宿夏姝, 刘东伟, 王立新. 基于InVEST-PLUS模型的黄河流域内蒙古段生态系统碳储量评价及预测[J]. 干旱区研究, 2024, 41(7): 1217-1227. |
[11] | 山建安, 朱睿, 尹振良, 杨华庆, 张薇, 方春爽. 基于CMIP6模式的中国西北地区干旱时空变化[J]. 干旱区研究, 2024, 41(5): 717-729. |
[12] | 叶虎, 裴浩, 姜艳丰, 那庆, 张立伟. 内蒙古半干旱区气溶胶散射特性及影响因素[J]. 干旱区研究, 2024, 41(5): 730-741. |
[13] | 雷菲亚, 李小双, 陶冶, 尹本丰, 荣晓莹, 张静, 陆永兴, 郭星, 周晓兵, 张元明. 西北干旱区藓类结皮覆盖下土壤多功能性特征及影响因子[J]. 干旱区研究, 2024, 41(5): 812-820. |
[14] | 许超杰, 窦燕, 孟琪琳. 基于EMD-GWO-LSTM模型的新疆标准化降水蒸散指数预测方法研究[J]. 干旱区研究, 2024, 41(4): 527-539. |
[15] | 刘如龙, 赵媛媛, 陈国清, 迟文峰, 刘正佳. 内蒙古黄河流域1990—2020年生境质量评估[J]. 干旱区研究, 2024, 41(4): 674-683. |
|