干旱区研究 ›› 2022, Vol. 39 ›› Issue (4): 997-1005.doi: 10.13866/j.azr.2022.04.01 cstr: 32277.14.AZR.20220401

• 天气与应用气候 • 上一篇    下一篇

雅鲁藏布江中游风沙区典型下垫面空气动力学参数研究

张正偲1(),张焱1,2,马鹏飞3,潘凯佳1,2,扎多4,益西拉姆4,仁青桑布4   

  1. 1.中国科学院西北生态环境资源研究院沙漠与沙漠化重点实验室,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
    3.西藏自治区气候中心,西藏 拉萨 850000
    4.山南市气象局,西藏 山南 856000
  • 收稿日期:2021-10-28 修回日期:2022-04-01 出版日期:2022-07-15 发布日期:2022-09-26
  • 作者简介:张正偲(1979-),男,研究员,主要从事干旱区地表过程研究. E-mail: zhangzhsi@lzb.ac.cn
  • 基金资助:
    中国科学院西部之光交叉团队-重点实验室专项和西藏自治区气象局“十三五”重点规划项目《雅江北岸异地扶贫搬迁区沙尘监测与预报预警系统建设》共同资助

Aerodynamic parameters of typical underlying surfaces in an aeolian region in the middle reaches of the Yarlung Zangbo River

ZHANG Zhengcai1(),ZHANG Yan1,2,MA Pengfei3,PAN Kaijia1,2,ZHA Duo4,Yixi Lamu4,Renqing Sangbu4   

  1. 1. Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou 730000, Gansu, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Tibet Climate Center, Lhasa 850000, Tibet, China
    4. Shannan Meteorological Bureau, Shannan 856000, Tibet, China
  • Received:2021-10-28 Revised:2022-04-01 Published:2022-07-15 Online:2022-09-26

摘要:

近地层空气动力学参数是风沙研究的重要内容。雅鲁藏布江(以下简称雅江)中游是西藏地区风沙灾害最为严重的区域之一,河漫滩和山麓流沙区是雅江中游地区风沙灾害的主要物源区,对其近地表空气动力学参数的研究,有助于对该地区的风沙灾害进行评估和沙尘暴预报预警。选取河漫滩植被区(植被盖度>20%)、人为干扰区(植被盖度<20%)和流沙区(无任何植被)3种下垫面,利用风速廓线法计算摩阻风速(u*)和空气动力学粗糙度(z0)。结果表明:(1) 近地层风速降幅植被区>人为干扰区>流沙区,植被区风速降幅约是流沙区的2倍。(2) 不同下垫面近地层风速廓线均可以表达为对数线性函数(uz=bln(z)+a),但拟合参数不同。(3) 植被区、人为干扰区和流沙区u*平均值分别为0.73 m·s-1、0.59 m·s-1和0.36 m·s-1,z0平均值分别为7.1×10-2 m、3.7×10-2 m和4.7×10-4 m。植被区u*z0约为流沙区的2倍和150倍。(4) 植被区、人为干扰区和流沙区的u*均随平均风速增大而增大,且增幅植被区>人为干扰区>流沙区。(5) 植被区和流沙区z0对平均风速的响应方式不同,植被区的z0随风速增大而缓慢增大,流沙区的z0在低风速有减小趋势,当风速增大到阈值(6.5 m·s-1)后,z0开始增加。

关键词: 雅鲁藏布江, 风速廓线, 摩阻风速, 空气动力学, 粗糙度长度

Abstract:

Aerodynamic parameters are an important research focus in the study of aeolian areas. Some of the most severe aeolian damage occurs along the middle reaches of the Yarlung Zangbo River in Tibet. The floodplains and shifting sand dunes are the main surface types and source areas of wind-sand degradation in this region. The study of aerodynamic parameters is conducive to the assessment of aeolian damage and the forecasting of sandstorms. For this reason, we examined aeolian processes in three surface types: river floodplain vegetation area (vegetation coverage > 20%), disturbed river floodplain vegetation area (vegetation coverage < 20%), and sand dune area (without any vegetation). The wind speed profile method was used to calculate the frictional wind speed (u*) and aerodynamic roughness (z0). The results showed the following: (1) The wind speed reduction amplitude near the ground layer was in the following order: vegetation area > disturbed vegetation area > sand dune area, and the wind speed reduction near the ground layer in the vegetation area was nearly twice that of the sand dune. (2) Although the near-surface wind speed profiles of different underlying surfaces can be expressed as log-linear functions (uz = bln(z) + a), the fitting parameters are different. (3) The averaged values of u* in the vegetation area, disturbed vegetation area, and sand dunes are 0.73, 0.59, and 0.36 m·s-1, respectively, and the averaged values of z0 are 7.1 × 10-2, 3.7 × 10-2, and 4.7 × 10-4 m, respectively. The u* and z0 of the vegetation area are approximately 2 and 150 times those of the sand dunes, respectively. (4) The u* of the vegetation area, disturbed vegetation area, and sand dunes all increased with increasing averaged wind speed, and the increase in amplitude is in the following order: vegetation area > disturbed vegetation area > sand dunes. (5) The responses of z0 to the average wind speed in the vegetation zone and the sand dunes are clearly different. The z0 of the vegetation area increased slowly with the increase in wind speed. The value of z0 in the sand dunes area has a decreasing trend at low wind speeds but begins to increase when the wind speed increases to a threshold value of 6.5 m·s-1.

Key words: Yarlung Zangbo River, wind speed profile, friction velocity, aerodynamics, roughness length