干旱区研究 ›› 2022, Vol. 39 ›› Issue (4): 1122-1132.doi: 10.13866/j.azr.2022.04.13
蒋星驰1,2(),李俊瑶1,2,陈峰3,李盛林3,温苏雅勒图4,王国林4,王少昆1,2()
收稿日期:
2021-12-06
修回日期:
2022-04-18
出版日期:
2022-07-15
发布日期:
2022-09-26
通讯作者:
王少昆
作者简介:
蒋星驰(1997-),硕士研究生,研究方向为土壤微生物生态学. E-mail: 基金资助:
JIANG Xingchi1,2(),LI Junyao1,2,CHEN Feng3,LI Shenglin3,Wensuyaletu 4,WANG Guolin4,WANG Shaokun1,2()
Received:
2021-12-06
Revised:
2022-04-18
Online:
2022-07-15
Published:
2022-09-26
Contact:
Shaokun WANG
摘要:
灌木、半灌木和小乔木是干旱荒漠区主要的植物类型,这些荒漠植物在维持荒漠区生物多样性和生态功能方面起着重要的作用。利用高通量测序技术,分析了阴山北麓荒漠区6种典型荒漠植物群落:红砂(Reaumuria songarica)、白刺(Nitraria tangutorum)、沙冬青(Ammopiptanthus mongolicus)、蒙古短舌菊(Brachanthemum mongolicum)、盐爪爪(Kalidium foliatum)和梭梭(Haloxylon ammodendron)的土壤细菌多样性和群落组成及其与土壤因子的关系。结果表明:(1) 6种荒漠植物群落土壤理化性质差异显著,其中盐爪爪和红砂群落土壤水分和养分条件较好;(2) 土壤细菌优势类群均为放线菌门(Actinobacteria)和变形菌门(Proteobacteria),两者占细菌总数的60%以上,优势细菌门所占比例在6种植物群落之间差异显著;(3) 盐爪爪群落土壤特异性细菌物种数显著高于其他植物群落,盐爪爪与红砂群落的土壤细菌Shannon多样性指数显著高于其他植物群落,Shannon多样性指数对环境变化的响应更为敏感,土壤水分和养分越高,细菌Shannon指数越高;(4) 冗余分析(RDA)结果表明:不同植物群落引起的土壤含水量、机械组成、pH和电导率的变化驱动了土壤细菌群落组成。
蒋星驰,李俊瑶,陈峰,李盛林,温苏雅勒图,王国林,王少昆. 阴山北麓荒漠区6种植物群落的土壤细菌特征[J]. 干旱区研究, 2022, 39(4): 1122-1132.
JIANG Xingchi,LI Junyao,CHEN Feng,LI Shenglin,Wensuyaletu ,WANG Guolin,WANG Shaokun. Soil bacterial characteristics of six plant communities in the desert areas to the North of Yinshan Mountains[J]. Arid Zone Research, 2022, 39(4): 1122-1132.
表1
不同荒漠植物群落基本信息"
群落类型 | 经纬度 | 海拔/m | 物种丰富度/个 | 植被盖度/% | 优势种高度/cm | 伴生种 |
---|---|---|---|---|---|---|
沙冬青群落 (AM) | 107°1.53′E, 41°45.30′N | 1333 | 6.60±0.46 | 20.20±0.77 | 91.80±13.38 | 沙生针茅(Stipa glareosa) |
蒙古短舌菊群落 (BM) | 106°22.86′E, 41°43.25′N | 1191 | 8.00±0.75 | 20.40±1.51 | 50.80±2.42 | 矮脚锦鸡儿(Caragana brachypoda) |
梭梭群落 (HA) | 107°0.57′E, 41°45.06′N | 1308 | 3.00±0.28 | 21.20±3.13 | 153.20±30.09 | 沙蒿(Artemisia desertorum) |
盐爪爪群落 (KF) | 107°20.04′E, 41°46.20′N | 1499 | 3.60±0.36 | 45.00±2.10 | 37.80±2.58 | 红砂(Reaumuria songarica) |
白刺群落 (NT) | 106°30.49′E, 41°33.03′N | 1444 | 8.20±0.95 | 57.00±8.67 | 51.60±4.97 | 雾冰藜(Bassia dasyphylla) |
红砂群落 (RS) | 106°58.38′E, 41°25.84′N | 1662 | 5.00±0.49 | 20.53±3.59 | 14.20±1.86 | 珍珠猪毛菜(Salsola passerina) |
表2
不同荒漠植物群落土壤理化性质特征"
机械组成/% | 含水率 /% | pH | 电导率 /(μS·cm-1) | 全氮含量 /% | 全碳含量 /% | 碳氮比 | |||
---|---|---|---|---|---|---|---|---|---|
粗砂 0.1~2 mm | 细砂 0.05~0.1 mm | 黏粉粒 <0.05 mm | |||||||
沙冬青(AM) | 79.51±2.86b | 19.15±2.44b | 1.34±0.42a | 1.58±0.09a | 9.04±0.06ab | 91.78±5.93a | 0.01±0.00a | 0.32±0.02a | 27.70±1.00c |
蒙古短舌菊 (BM) | 78.84±1.22b | 20.01±1.17bc | 1.16±0.09a | 2.57±0.19a | 8.87±0.04ab | 120.68±8.40a | 0.01±0.00a | 0.23±0.02a | 15.97±0.54a |
梭梭(HA) | 89.01±1.80c | 10.53±1.68a | 0.46±0.12a | 3.03±0.18ab | 9.83±0.10c | 239.46±25.72ab | 0.01±0.00a | 0.37±0.01a | 30.81±0.78d |
盐爪爪(KF) | 55.54±1.60a | 39.99±1.69d | 4.47±0.64b | 12.09±1.60c | 8.77±0.05a | 985.00±66.93c | 0.09±0.00c | 1.16±0.08c | 13.42±0.26a |
白刺(NT) | 71.62±0.87b | 26.77±0.84c | 1.61±0.06a | 3.23±0.12ab | 9.07±0.03b | 124.62±16.98a | 0.02±0.00a | 0.29±0.02a | 16.02±025a |
红砂(RS) | 73.38±1.99b | 20.86±1.35bc | 5.76±0.74b | 5.79±0.39b | 9.11±0.10b | 419.70±82.11b | 0.04±0.00b | 0.70±0.06b | 19.72±0.36b |
F | 37.08 | 37.56 | 23.53 | 32.07 | 29.76 | 57.47 | 70.57 | 170.20 | 138.20 |
P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
表3
基于RDA模型的环境因子置换检验"
环境因子 | df自由度 | Variance方差 | F值 | P值 |
---|---|---|---|---|
SWC | 1 | 0.052 | 14.316 | 0.001*** |
CS | 1 | 0.008 | 2.254 | 0.036* |
SC | 1 | 0.042 | 11.487 | 0.001*** |
pH | 1 | 0.025 | 6.954 | 0.001*** |
EC | 1 | 0.011 | 3.058 | 0.005** |
TN | 1 | 0.004 | 1.098 | 0.359 |
TC | 1 | 0.004 | 1.213 | 0.267 |
CN | 1 | 0.006 | 1.749 | 0.103 |
SPE | 1 | 0.004 | 1.229 | 0.264 |
COV | 1 | 0.004 | 1.115 | 0.322 |
HEI | 1 | 0.003 | 0.908 | 0.496 |
[1] |
Li W, Li Y, Lyu J, et al. Rhizosphere effect alters the soil microbiome composition and C, N transformation in an arid ecosystem[J]. Applied Soil Ecology, 2022, 170: 104296.
doi: 10.1016/j.apsoil.2021.104296 |
[2] | 李欣玫, 左易灵, 薛子可, 等. 不同荒漠植物根际土壤微生物群落结构特征[J]. 生态学报, 2018, 38(8): 2855-2863. |
[Li Xinmei, Zuo Yilin, Xue Zike, et al. Characteristics of microbial community structure in rhizosphere soil of different desert plants[J]. Acta Ecologica Sinica, 2018, 38(8): 2855-2863.] | |
[3] | 李新乐, 鲍芳, 吴波, 等. 荒漠植物白刺新固定碳在植物-土壤系统中的分配[J]. 草业学报, 2019, 28(2): 36-43. |
[Li Xinle, Bao Fang, Wu Bo, et al. Distribution of newly fixed carbon of Nitraria tangutorum in the plant-soil system[J]. Acta Prataculturae Sinica, 2019, 28(2): 36-43.] | |
[4] | 苏闯. 内蒙古灌丛和荒漠植物群落多样性格局及群落构建[D]. 呼和浩特: 内蒙古大学, 2019. |
[Su Chuang. Diversity Pattern and Community Assembly of Shrub and Desert Plant Communities in Inner Mongolia[D]. Hohhot: Inner Mongolia University, 2019.] | |
[5] |
Prestel E, Regeard C, Salamitou S, et al. The bacteria and bacteriophages from a Mesquite Flats site of the Death Valley desert[J]. Antonie Van Leeuwenhoek, 2013, 103(6): 1329-1341.
doi: 10.1007/s10482-013-9914-4 pmid: 23559041 |
[6] |
Wagg C, Bender S F, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences, 2014, 111(14): 5266-5270.
doi: 10.1073/pnas.1320054111 |
[7] |
Ben-David E A, Eli Z, Yoni S, et al. Assessment of the spatial distribution of soil microbial communities in patchy arid and semi-arid landscapes of the Negev Desert using combined PLFA and DGGE analyses[J]. Fems Microbiology Ecology, 2011(3): 492-503.
doi: 10.1111/j.1574-6941.2011.01075.x pmid: 21401693 |
[8] | Ouyang S, Tian Y, Liu Q, et al. Nitrogen competition between three dominant plant species and microbes in a temperate grassland[J]. Plant & Soil, 2016, 408(1-2): 121-132. |
[9] |
Kieft T L, Soroker E, Firestone M K. Microbial biomass response to a rapid increase in water potential when dry soil is wetted[J]. Soil Biology and Biochemistry, 1987, 19(2): 119-126.
doi: 10.1016/0038-0717(87)90070-8 |
[10] | 袁仁文, 刘琳, 张蕊, 等. 植物根际分泌物与土壤微生物互作关系的机制研究进展[J]. 中国农学通报, 2020, 36(2): 26-35. |
[Yuan Renwen, Liu Lin, Zhang Rui, et al. The interaction mechanism between plant rhizosphere secretion and soil microbe: A review[J]. Chinese Agricultural Science Bulletin, 2020, 36(2): 26-35.] | |
[11] | Schmid M W, Moorsel S, Hahl T, et al. Effects of plant community history, soil legacy and plant diversity on soil microbial communities[J]. Journal of Ecology, 2021, 36(2): 26-35. |
[12] |
Kourtev P S, Ehrenfeld J G, Hggblom M. Exotic plant species alter the microbial community structure and function in the soil[J]. Ecology, 2002, 83(11): 3152-3166.
doi: 10.1890/0012-9658(2002)083[3152:EPSATM]2.0.CO;2 |
[13] | 滕泽宇, 肖生春, 陈小红, 等. 阿拉善荒漠5种灌丛下土壤细菌特征[J]. 中国沙漠, 2021, 41(4): 34-44. |
[Teng Zeyu, Xiao Shengchun, Chen Xiaohong, et al. The soil bacterial condition beneath five shrub species in the central Alxa[J]. Journal of Desert Research, 2021, 41(4): 34-44.] | |
[14] |
Wang S K, Zuo X A, Zhao X Y, et al. Dominant plant species shape soil bacterial community in semiarid sandy land of northern China[J]. Ecology and Evolution, 2018, 8(3): 1693-1704.
doi: 10.1002/ece3.3746 |
[15] |
Lauber C L, Hamady M, Knight R, et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J]. Applied and Environmental Microbiology, 2009, 75(15): 5111-5120.
doi: 10.1128/AEM.00335-09 |
[16] |
Zhalnina K, Dias R, Quadros P D D, et al. Soil pH determines microbial diversity and composition in the park grass experiment[J]. Microbial Ecology, 2015, 69(2): 395-406.
doi: 10.1007/s00248-014-0530-2 |
[17] |
魏艳晨, 陈吉祥, 王永刚, 等. 荒漠植物珍珠猪毛菜根际土壤细菌多样性与土壤理化性质相关性分析[J]. 中国农业科技导报, 2022, 24(5): 209-217.
doi: 10.13304/j.nykjdb.2021.0015 |
[Wei Yanchen, Chen Jixiang, Wang Yonggang, et al. Analysis of bacterial diversity in the rhizosphere soil of Salsola passerina and its correlation with the soil physical and chemical properties[J]. Journal of Agricultural Science and Technology, 2022, 24(5): 209-217.]
doi: 10.13304/j.nykjdb.2021.0015 |
|
[18] |
周桔, 雷霆. 土壤微生物多样性影响因素及研究方法的现状与展望[J]. 生物多样性, 2007, 15(3): 306-311.
doi: 10.1360/biodiv.070069 |
[Zhou Ju, Lei Ting. Review and prospects on methodology and affecting factors of soil microbial diversity[J]. Biodiversity Science, 2007, 15(3): 306-311.]
doi: 10.1360/biodiv.070069 |
|
[19] |
Cederlund H, Wessén E, Enwall K, et al. Soil carbon quality and nitrogen fertilization structure bacterial communities with predictable responses of major bacterial phyla[J]. Applied Soil Ecology, 2014, 84: 62-68.
doi: 10.1016/j.apsoil.2014.06.003 |
[20] |
Zhou X Qi, Guo Z Y, Chen C R, et al. Soil microbial community structure and diversity are largely influenced by soil pH and nutrient quality in 78-year-old tree plantations[J]. Biogeosciences, 2017, 14(8): 2101-2111.
doi: 10.5194/bg-14-2101-2017 |
[21] |
Ma L, Guo C, Lyu X, et al. Soil moisture and land use are major determinants of soil microbial community composition and biomass at a regional scale in northeastern China[J]. Biogeosciences, 2015, 12(8): 2585-2596.
doi: 10.5194/bg-12-2585-2015 |
[22] | 丁一秀, 谢荣辉, 高安琪, 等. 内蒙古西部地区土壤微生物数量及其土壤理化特性[J]. 干旱区研究, 2017, 34(6): 1294-1303. |
[Ding Yixiu, Xie Ronghui, Gao Anqi, et al. Quantity of soil microbes and soil physiochemical properties in West Inner Mongolia[J]. Arid Zone Research, 2017, 34(6): 1294-1303.] | |
[23] | 王卫霞, 罗明, 潘存德. 塔里木河下游几种荒漠植物根际土壤微生物及其活性[J]. 中国沙漠, 2010, 30(3): 571-576. |
[Wang Weixia, Luo Ming, Pan Cunde. Microorganisms and its biological activity in rhizospheric soil around desert plants at the lower reaches of Tarim River, Xinjiang, China[J]. Journal of Desert Research, 2010, 30(3): 571-576.] | |
[24] | 张鹏, 李颖, 王业林, 等. 短脚锦鸡儿灌丛对植物群落和土壤微生物群落的促进效应研究[J]. 干旱区研究, 2021, 38(2): 421-428. |
[Zhang Peng, Li Ying, Wang Yelin, et al. The positive effect of Caragana breviflora shrubs on plant communities and soil microbial communities in the Inner Mongolia desert region[J]. Arid Zone Research, 2021, 38(2): 421-428.] | |
[25] | 祝萍, 刘鑫, 郑瑜晗, 等. 北方重点生态功能区生态系统服务权衡与协同[J]. 生态学报, 2020, 40(23): 8694-8706. |
[Zhu Ping, Liu Xin, Zheng Yuhan, et al. Tradeoffs and synergies of ecosystem services in key ecological function zones in northern China[J]. Acta Ecologica Sinica, 2020, 40(23): 8694-8706.] | |
[26] | 张文才. 关于对乌拉特荒漠草原生态环境的分析及发展林业的几点意见[J]. 内蒙古林业科技, 1982(4): 40-44. |
[Zhang Wencai. Some opinions on the analysis of ecological environment of Ulat Desert grassland and the development of forestry[J]. InnerMongolia Forestry Science and Technology, 1982(4): 40-44.] | |
[27] | 贾昆峰. 乌拉特后旗植物图鉴[M]. 呼和浩特: 内蒙古人民出版社, 2014: 9-13. |
[Jia Kunfeng. Botanical Guide of the Rear Banner of Urat[M]. Hohhot: Inner Mongolia People’s Publishing House, 2014: 9-13.] | |
[28] | 曲浩, 赵学勇, 王少昆, 等. 乌拉特荒漠草原不同植被群落对土壤碳、氮的影响[J]. 草业科学, 2014, 31(3): 355-360. |
[Qu Hao, Zhao Xueyong, Wang Shaokun, et al. Effects of different vegetation communities on soil carbon and nitrogen contents in Urad desert steppe[J]. Pratacultural Science, 2014, 31(3): 355-360.] | |
[29] | Caporaso J G, Lauber C L, Walters W A, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(Suppl. 1): 4516-4522. |
[30] | 张金屯, 米湘成, 曹科. Beta多样性度量方法研究进展[J]. 山西大学学报(自然科学版), 2022, 45(3): 826-843. |
[Zhang Jintun, Mi Xiangcheng, Cao Ke. Research progress of Beta-diversity measurement methods[J]. Journal of Shanxi University(Natural Science Edition), 2022, 45(3): 826-843.] | |
[31] | Ginestet C. Ggplot2: Elegant graphics for data analysis[J]. Journal of the Royal Statistical Society, 2011, 174(1): 245-246. |
[32] |
Conway J R, Lex A, Gehlenborg N, et al. UpSetR: An R package for the visualization of intersecting sets and their properties[J]. Bioinformatics, 2017, 33(18): 2938-2940.
doi: 10.1093/bioinformatics/btx364 pmid: 28645171 |
[33] | Oksanen J, Blanchet F G, Friendly M, et al. vegan community ecology package version 2.5-7 November 2020. |
[34] | 陈禹竹, 唐琦勇, 顾美英, 等. 盐爪爪根部微生物分布特征及盐浓度对碳源代谢分析的影响[J]. 微生物学通报, 2019, 46(11): 2900-2908. |
[Chen Yuzhu, Tang Qiyong, Gu Meiyin, et al. Microbial distribution characteristics around the roots of Kalidium foliatum and the effect of salt concentrations on microbial metabolism analysis[J]. Microbiol China, 2019, 46(11): 2900-2908.] | |
[35] |
Zhang W, Zhang G S, Liu G X, et al. Bacterial diversity and distribution in the southeast edge of the Tengger Desert and their correlation with soil enzyme activities[J]. Journal of Environmental Sciences, 2012, 24(11): 2004-2011.
doi: 10.1016/S1001-0742(11)61037-1 |
[36] |
Mchugh T A, Compson Z, van Gestel N, et al. Climate controls prokaryotic community composition in desert soils of the southwestern United States[J]. Fems Microbiology Ecology, 2017, 93(10), doi.org/ 10.1093/femsec/fix116.
doi: 10.1093/femsec/fix116 |
[37] |
Kinsbursky R S, Degani R, Baranes G, et al. Root-microbial population dynamics in a soil profile under the canopy of the desert shrub Zygophyllum dumosum[J]. Journal of Arid Environments, 1990, 19(3): 261-267.
doi: 10.1016/S0140-1963(18)30790-0 |
[38] | Gao B. Conserved indels in protein sequences that are characteristic of the phylum Actinobacteria[J]. International Journal of Systematic & Evolutionary Microbiology, 2005, 55(6): 2401-2412. |
[39] |
Fierer N, Bradford M A, Jackson R B. Toward an ecological classification of soil bacteria[J]. Ecology, 2007, 88(6): 1354-1364.
pmid: 17601128 |
[40] |
Hanada S, Takaichi S, Matsuura K, et al. Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes[J]. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(1): 187-193.
doi: 10.1099/00207713-52-1-187 |
[41] |
Kaboré O D, Godreuil S, Drancourt M. Planctomycetes as host-associated bacteria: a perspective that holds promise for their future isolations, by mimicking their native environmental niches in clinical microbiology laboratories[J]. Frontiers in Cellular and Infection Microbiology, 2020, 519301, doi.org/ 10.3389/fcimb.2020.519301.
doi: 10.3389/fcimb.2020.519301 |
[42] |
Delgado-Baquerizo M, Oliverio A M, Brewer T E, et al. A global atlas of the dominant bacteria found in soil[J]. Science, 2018, 359(6373): 320-325.
doi: 10.1126/science.aap9516 pmid: 29348236 |
[43] |
Borowik A, Wyszkowska J. Soil moisture as a factor affecting the microbiological and biochemical activity of soil[J]. Plant Soil and Environment, 2016, 62(6): 250-255.
doi: 10.17221/158/2016-PSE |
[44] | 李善家, 王福祥, 从文倩, 等. 河西走廊荒漠土壤微生物群落结构及环境响应[J/OL]. 土壤学报:1-12[2022-04-18]. http://kns.cnki.net/kcms/detail/32.1119.P.20220307.1015.002.html. |
Li Shanjia, Wang Fuxiang, Cong Wenqian, et al. Microbial community structure and environmental response of desert soil in Hexi Corridor[J/OL]. Acta Pedologica Sinica: 1-12[2022-04-18]. http://kns.cnki.net/kcms/detail/32.1119.P.20220307.1015.002.html. ] | |
[45] | 哈里·阿力腾别克, 崔雨萱, 刘慧霞, 等. 短期封育对伊犁绢蒿荒漠草地土壤氮及其粒径组成的影响[J]. 草地学报, 2022, 30(1): 134-143. |
[Hali Alitengbieke, Cui Yuxuan, Liu Huixia, et al. Effects of short-term grazing exclusion on soil nitrogen and particle size composition of Seriphidium transiliense desert grassland[J]. Acta Agrestia Sinica, 2022, 30(1): 134-143.] | |
[46] |
Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences, 2006, 103(3): 626-631.
doi: 10.1073/pnas.0507535103 |
[47] | 王少昆, 赵学勇, 贾昆峰, 等. 乌拉特荒漠草原小针茅(Stipa klemenzii)群落土壤细菌多样性及垂直分布特征[J]. 中国沙漠, 2016, 36(6): 1564-1570. |
[Wang Shaokun, Zhao Xueyong, Jia Kunfeng, et al. Soil bacterial diversity and its vertical distribution in Stipa klemenzii community of Urad Desert Steppe[J]. Journal of Desert Research, 2016, 36(6): 1564-1570.] | |
[48] |
Feeser K L, Van Horn D J, Buelow H N, et al. Local and regional scale heterogeneity drive bacterial community diversity and composition in a polar desert[J]. Frontiers in Microbiology, 2018, 01928, doi.org/ 10.3389/fmicb.2018.01928.
doi: 10.3389/fmicb.2018.01928 |
[49] | 潘昭隆, 刘会芳, 赵帅翔, 等. 基于土壤电导率控制的养分供给对设施番茄生长、产量和品质的影响[J]. 中国土壤与肥料, 2022(1): 163-171. |
[Pan Zhaolong, Liu Huifang, Zhao Shuaixiang, et al. Effects of nutrient supply based on soil EC control on tomato growth, yield and quality[J]. Soil and Fertilizer Sciences in China, 2022(1): 163-171.] | |
[50] | 瞿王龙, 杨小鹏, 张存涛, 等. 干旱、半干旱地区天然草原灌木及其肥岛效应研究进展[J]. 草业学报, 2015, 24(4): 201-207. |
[Qu Wanglong, Yang Xiaopeng, Zhang Cuntao, et al. Shrub-mediated “fertile island” effects in arid and semi-arid grassland[J]. Acta Prataculturae Sinica, 2015, 24(4): 201-207.] |
[1] | 阿拉依·哈那提, 刘艳霞, 兰海燕. 荒漠植物表皮毛的凝结水形成及吸收机制研究进展[J]. 干旱区研究, 2024, 41(1): 114-123. |
[2] | 鲁元波, 严成, 宋春武, 李雅娟, 来赪雲. 天山南坡山前荒漠草地植物群落分布对环境因子的响应——以拜城县为例[J]. 干旱区研究, 2023, 40(8): 1346-1357. |
[3] | 孙启兴, 杨晓东, 李浡睿, 孔翠翠, 伊力哈穆江·艾尼弯, 周洁, 吕光辉. 水力性状对荒漠植物群落物种多度分布格局的影响[J]. 干旱区研究, 2023, 40(3): 412-424. |
[4] | 马俊梅,马剑平,满多清,郭春秀,张裕年,赵鹏,王飞,李元星. 河西走廊天然胡杨林的分布和更新特征及其与土壤因子的关系[J]. 干旱区研究, 2023, 40(2): 224-234. |
[5] | 余洋,张志浩,杨建明,柴旭田,曾凡江. 疏叶骆驼刺叶、根生态化学计量特征对水氮添加的响应[J]. 干旱区研究, 2022, 39(2): 551-559. |
[6] | 王飞, 郭树江, 韩福贵, 王方琳, 张卫星, 张裕年. 民勤荒漠植物叶片水分吸收性状研究[J]. 干旱区研究, 2020, 37(5): 1256-1263. |
[7] | 范连连, 李耀明, Nataliia Terekhina, 马学喜, 马杰. 冷荒漠草本植物数量特征对不同水分输入和气象因子的响应 [J]. 干旱区研究, 2019, 36(1): 139-146. |
[8] | 王诚煜, 冯海艳, 杨忠芳, 夏学齐, 余涛, 李淼, 江丽珍. 内蒙古中北部球囊霉素相关土壤蛋白的分布及其环境影响[J]. 干旱区研究, 2013, 30(1): 22-28. |
|