[1] |
Kidd C, Huffman G. Global precipitation measurement[J]. Meteorological Applications, 2011, 18(3):334-353.
doi: 10.1002/met.v18.3
|
[2] |
Chen Y, Sharma S, Zhou X, et al. Spatial performance of multiple reanalysis precipitation datasets on the southern slope of central Himalaya[J]. Atmospheric Research, 2020, 250:105365.
doi: 10.1016/j.atmosres.2020.105365
|
[3] |
闫燕, 刘罡, 何军, 等. 重庆地区卫星及再分析降水资料评估[J]. 高原气象, 2020, 39(3):594-608.
|
|
[ Yan Yan, Liu Gang, He Jun, et al. Assessment of satellite and reanalysis precipitation data in Chongqing[J]. Plateau Meteorology, 2020, 39(3):594-608. ]
|
[4] |
Tapiador F J, Turk F J, Petersen W, et al. Global precipitation measurement: Methods, datasets and applications[J]. Atmospheric Research, 2012,104-105:70-97.
|
[5] |
汪君, 王会军, 洪阳. 一个新的高分辨率洪涝动力数值监测预报系统[J]. 科学通报, 2016, 61(增刊):518-528.
|
|
[ Wang Jun, Wang Huijun, Hong Yang. A high-resolution flood forecasting and monitoring system for China using satellite remote sensing data[J]. Chinese Science Bulletin, 2016, 61(Suppl. ): 518-528. ]
|
[6] |
Jiang S, Ren L, Hong Y, et al. Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method[J]. Journal of Hydrology, 2012, 452-453:213-225.
|
[7] |
王炳尧, 刘星辰, 刘立超. 1957—2017年腾格里沙漠地区降水量[J]. 中国沙漠, 2020, 40(4):163-170.
|
|
[ Wang Bingyao, Liu Xingchen, Liu Lichao. Characteristics of precipitation in the surrounding area of Tengger Desert in 1957-2017[J]. Journal of Desert Research, 2020, 40(4):163-170. ]
|
[8] |
王玉丹, 陈浩, 刘璨然, 等. ITPCAS和CMORPH两种遥感降水产品在陕西地区的适用性研究[J]. 干旱区研究, 2018, 35(3):579-588.
|
|
[ Wang Yudan, Chen Hao, Liu Canran, et al. Applicability of ITPCAS and CMORPH precipitation datasets over Shaanxi province[J]. Arid Zone Research, 2018, 35(3):579-588. ]
|
[9] |
刘田, 阳坤, 秦军, 等. 青藏高原中、东部气象站降水资料时间序列的构建与应用[J]. 高原气象, 2018, 37(6):1449-1457.
|
|
[ Liu Tian, Yang Kun, Qin Jun, et al. Construction and applications of time series of monthly precipitation at weather stations in the central and eastern Qinghai-Tibetan plateau[J]. Plateau Meteorology, 2018, 37(6):1449-1457. ]
|
[10] |
宇婧婧, 沈艳, 潘旸, 等. 概率密度匹配法对中国区域卫星降水资料的改进[J]. 应用气象学报, 2013, 24(5):544-553.
|
|
[ Yu Jingjing, Shen Yan, Pan Yang, et al. Improvement of satellite-based precipitation estimates over China based on probability density function matching method[J]. Journal of Applied Meteorological Science, 2013, 24(5):544-553. ]
|
[11] |
潘旸, 谷军霞, 宇婧婧, 等. 中国区域高分辨率多源降水观测产品的融合方法试验[J]. 气象学报, 2018, 76(5):755-766.
|
|
[ Pan Yang, Gu Junxia, Yu Jingjing, et al. Test of merging methods for multi-source observed precipitation products at high resolution over China[J]. Acta Meteorologica Sinica, 2018, 76(5):755-766. ]
|
[12] |
Lu D, Yong B. Evaluation and hydrological utility of the latest GPM IMERG V5 and GSMaP V7 precipitation products over the Tibetan Plateau[J]. Remote Sensing, 2018, 10(12):2022.
doi: 10.3390/rs10122022
|
[13] |
Sharma S, Chen Y, Zhou X, et al. Evaluation of GPM-Era satellite precipitation products on the southern slopes of the central Himalayas against rain gauge data[J]. Remote Sensing, 2020, 12(11):1836.
doi: 10.3390/rs12111836
|
[14] |
Dinku T, Connor S J, Ceccato P. Comparison of CMORPH and TRMM-3B42 over Mountainous Regions of Africa and South America: Satellite Rainfall Applications for Surface Hydrology[M]. Dordrecht: Springer Press, 2010.
|
[15] |
Funk C, Peterson P, Landsfeld M, et al. The climate hazards infrared precipitation with stations: A new environmental record for monitoring extremes[J]. Scientific Data, 2015, 2(1):1-21.
|
[16] |
Sahlu D, Moges S A, Nikolopoulos E I, et al. Evaluation of high-resolution multi-satellite and reanalysis rainfall products over East Africa[J]. Advances in Meteorology, 2017, 2017:1-14. https://doi.org/10.1155/2017/4957960.
|
[17] |
王文, 汪小菊, 王鹏. GLDAS月降水数据在中国区的适用性评估[J]. 水科学进展, 2014, 25(6):769-778.
|
|
[ Wang Wen, Wang Xiaoju, Wang Peng. Assessing the applicability of GLDAS monthly precipitation data in China[J]. Advances in Water Science, 2014, 25(6):769-778. ]
|
[18] |
Dee D P, Uppala S M, Simmons A J, et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656):553-597.
doi: 10.1002/qj.v137.656
|
[19] |
Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730):1999-2049.
doi: 10.1002/qj.v146.730
|
[20] |
Saha S, Moorthi S, Pan H L, et al. The NCEP climate forecast system reanalysis[J]. Bulletin of the American Meteorological Society, 2010, 91(8):1015-1058.
doi: 10.1175/2010BAMS3001.1
|
[21] |
张蒙, 黄安宁, 计晓龙, 等. 卫星反演降水资料在青藏高原地区的适用性分析[J]. 高原气象, 2016, 35(1):34-42.
|
|
[ Zhang Meng, Huang Anning, Ji Xiaolong, et al. Validation of satellite precipitation products over Qinghai-Xizang Plateau Region[J]. Plateau Meteorology, 2016, 35(1):34-42. ]
|
[22] |
Li Chunxiang, Zhao Tianbao, Shi Chunxiang, et al. Evaluation of daily precipitation product in China from the CMA global atmospheric interim reanalysis[J]. Journal of Meteorological Research, 2020, 34(1):117-136.
doi: 10.1007/s13351-020-8196-9
|
[23] |
Molod A, Takacs L, Suarez M, et al. Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2[J]. Geoscientific Model Development, 2015, 8(5):1339-1356.
doi: 10.5194/gmd-8-1339-2015
|
[24] |
McNally A, Arsenault K, Kumar S, et al. A land data assimilation system for sub-Saharan Africa food and water security applications[J]. Scientific Data, 2017, 4(1):1-19.
|
[25] |
McNally A, Verdin K, Harrison L, et al. Acute Water-Scarcity monitoring for Africa[J]. Water, 2019, 11(10):1968.
doi: 10.3390/w11101968
|
[26] |
He J, Yang K, Tang W, et al. The first high-resolution meteorological forcing dataset for land process studies over China[J]. Scientific Data, 2020, 7(25):1-12.
doi: 10.1038/s41597-019-0340-y
|
[27] |
刘川, 余晔, 解晋, 等. 多种土壤温湿度资料在青藏高原的适用性[J]. 高原气象, 2015, 34(3):653-665.
|
|
[ Liu Chuan, Yu Ye, Xie Jin, et al. Applicability of soil temperature and moisture in several datasets over Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2015, 34(3):653-665. ]
|
[29] |
Smith R B, Barstad I. A linear theory of orographic precipitation[J]. Journal of Atmospheric Sciences, 2004, 61(12):1377-1391.
doi: 10.1002/(ISSN)1099-1085
|
|
Blocken B, Poesen J, Carmeliet J. Impact of wind on the spatial distribution of rain over micro-scale topography-numerical modelling and experimental verification[J]. Hydrological Processes, 2006, 20:345-368.
|
[30] |
申露婷, 张方敏, 黄进, 等. 1961—2018 年内蒙古生长季昼夜降水气候特征[J]. 干旱区研究, 2020, 37(6):1519-1527.
|
|
[ Shen Luting, Zhang Fangmin, Huang Jin, et al. Climate characteristics of day and night precipitation during the growing season in Inner Mongolia from 1961 to 2018[J]. Arid Zone Research, 2020, 37(6):1519-1527. ]
|
[31] |
Fallah A, Rakhshandehroo G R, Berg P, et al. Evaluation of precipitation datasets against local observations in southwestern Iran[J]. International Journal of Climatology, 2020, 40(9):4102-4116.
doi: 10.1002/joc.v40.9
|
[32] |
Wang Y, Yang K, Zhou X, et al. Synergy of orographic drag parameterization and high resolution greatly reduces biases of WRF-simulated precipitation in central Himalaya[J]. Climate Dynamics, 2020, 54:1729-1740.
doi: 10.1007/s00382-019-05080-w
|