干旱区研究 ›› 2025, Vol. 42 ›› Issue (3): 420-430.doi: 10.13866/j.azr.2025.03.03 cstr: 32277.14.AZR.20250303

• 天气与气候 • 上一篇    下一篇

青海三江源高寒荒漠与高寒草甸地表感热通量与潜热通量特征

颜玉倩(), 李甫, 陈奇(), 杜华礼, 孙树娇   

  1. 青海省气象科学研究所,青海省防灾减灾重点实验室,青海 西宁 810001
  • 收稿日期:2024-05-15 修回日期:2024-07-24 出版日期:2025-03-15 发布日期:2025-03-17
  • 通讯作者: 陈奇. E-mail: qq7qq7cq@163.com
  • 作者简介:颜玉倩(1990-),女,硕士,高级工程师,主要从事高寒生态与气候变化研究. E-mail: yan_yq1113@sina.com
  • 基金资助:
    国家自然科学基金区域创新发展联合基金(U22A20556);青海省科技基础研究计划(2023-ZJ-737);国家自然基金联合基金(U21A2021)

Characteristic of surface heat fluxes in alpine desert and meadow in the Three Rivers Source in Qinghai

YAN Yuqian(), LI Fu, CHEN Qi(), DU Huali, SUN Shujiao   

  1. Key Laboratory of Disaster Prevention and Mitigation in Qinghai Province, Qinghai Institute of Meteorological Science, Xining 810001, Qinghai, China
  • Received:2024-05-15 Revised:2024-07-24 Published:2025-03-15 Online:2025-03-17

摘要: 土地利用变化的生物地球物理过程是研究全球变化的重要内容,认知不同植被覆盖地表热通量变化特征,对于进一步认识全球变化具有重要科学意义。通过位于青海三江源区沱沱河高寒荒漠和隆宝高寒草甸地表热通量涡动观测及梯度微气象观测,分别估算感热及潜热输送系数;重建基于气象站观测数据的1981—2020年沱沱河与玉树地表感热、潜热通量月值,探讨地表感热、潜热通量与气象要素间的关系及与再分析数据进行对比分析。结果表明:(1) 对比总体输送法计算的热通量值与野外站涡动观测值,两个站点的地表感热通量相关性要优于地表潜热通量,不论是地表感热通量还是地表潜热通量,其相关性沱沱河站要优于隆宝站。(2) 不同下垫面类型地表热通量的年际变化并不一致。地表潜热通量、地表感热通量及地面热源在高寒荒漠均呈现出微弱减小趋势,但在高寒草甸均呈上升趋势。(3) 地表感热通量和地表潜热通量的多年月平均值在沱沱河站和隆宝站均反映出单峰值,地表感热通量在5月达到最大,地表潜热通量在7月达到最大。地面热源在两站略有不同,沱沱河站地面热源表现为单峰值,在6月达到最大,而在玉树站表现双峰值,在5月和8月达到峰值。(4) 沱沱河站的热通量计算值与再分析资料的相关性要优于玉树站。玉树站地表感热通量存在明显的高估和低估,玉树站地表潜热通量在2008年前计算值低于再分析值,在2008年后高于再分析值。

关键词: 感热通量, 潜热通量, 地面热源, 三江源

Abstract:

The biogeophysical process of land use change is an essential part of global change studies. Recognizing the characteristics of land surface heat flux under different vegetation cover is of great scientific significance for further understanding global change. Based on the eddy observation of the surface heat flux and gradient micrometeorological data of the Tuotuohe and Longbao field stations, the sensible and latent heat transfer coefficients were constructed by an inverse algorithm. Using this coefficient, the monthly heat flux values from 1981 to 2020 were constructed based on the Tuotuohe and Yushu meteorological stations. The interannual and monthly changes of heat flux were analyzed. The relationship between heat flux and meteorological elements is discussed systematically, and the calculated heat flux data are compared with the reanalysis data in detail. The conclusions are as follows: (1) Compared with the heat flux calculated by the total transport method and the field station’s eddy observation value, the correlation of the two stations’ surface sensible heat flux is better than that of the surface latent heat flux; that of the Tuotuohe station is better than that of the Longbao station. (2) The interannual variation of surface heat flux of different underlying surface types is not consistent. From 1981 to 2020, the surface latent and sensible heat fluxes and surface heat source of the Tuotuohe station displayed a weak decreasing trend. The Yushu station’s surface sensible and latent heat fluxes and surface heat source display an upward trend. (3) The monthly averages of surface sensible and latent heat fluxes display a single peak at both stations. The surface sensible heat flux reaches its maximum in May, and the surface latent heat flux reaches its maximum in July. The surface heat source differs slightly between the two stations: it exhibits a single peak at the Tuotuohe station, reaching a maximum in June, and a double peak at the Yushu station, reaching a peak in May and August. (4) The correlation between the calculated heat flux and the reanalysis data of the Tuotuohe station is better than that of the Yushu station. The surface sensible heat flux of the Yushu station is overestimated and underestimated. The calculated value of the Yushu station’s surface latent heat flux is lower than the reanalysis value before 2008 and higher than that after 2008.

Key words: sensible heat flux, latent heat flux, surface heat source, Three River Source