干旱区研究 ›› 2025, Vol. 42 ›› Issue (2): 299-311.doi: 10.13866/j.azr.2025.02.10 cstr: 32277.14.AZR.20250210
刘哿1,2(), 赵恒谦1,2(
), 皇甫霞丹2, 付含聪2, 王盼2, 徐飞2, 韩添2
收稿日期:
2024-07-14
修回日期:
2024-12-17
出版日期:
2025-02-15
发布日期:
2025-02-21
通讯作者:
赵恒谦. E-mail: zhaohq@cumtb.edu.cn作者简介:
刘哿(1998-),女,硕士研究生,主要从事植被生态遥感研究. E-mail: lareinawl@163.com
基金资助:
LIU Ge1,2(), ZHAO Hengqian1,2(
), HUANGFU Xiadan2, FU Hancong2, WANG Pan2, XU Fei2, HAN Tian2
Received:
2024-07-14
Revised:
2024-12-17
Published:
2025-02-15
Online:
2025-02-21
摘要:
利用Google Earth Engine(GEE)云计算平台,基于改进的CASA模型对鄂尔多斯2001—2020年间的植被净初级生产力(NPP)进行估算,并运用Sen斜率分析和MK趋势分析方法对NPP的时空变化进行深入分析,同时估算了其固碳能力。结果表明:(1)鄂尔多斯2001—2020年间植被NPP呈现明显的季节变化,最高值出现在7—8月,年平均NPP为78.04 g C·m-2·a-1,整体呈波动上升趋势。(2)在空间分布上,NPP存在明显的异质性,东北部较高,西北部较低,高值区集中在达拉特旗和准格尔旗,低值区则主要分布在杭锦旗。(3)生态工程的实施与NPP变化并不完全同步,整体呈现先慢后快的特点,大部分区域在2011年后NPP变化速率显著提升,但杭锦旗等生态环境恶劣地区的改善较慢,有一定滞后性。(4)鄂尔多斯固碳量在2011年呈大面积负值,但2020年固碳量空间异质性显著增强,东部较高、西部较低,杭锦旗西部恢复仍需加强,而达拉特旗固碳能力显著提升。
刘哿, 赵恒谦, 皇甫霞丹, 付含聪, 王盼, 徐飞, 韩添. 基于GEE的鄂尔多斯长时序植被NPP时空演变[J]. 干旱区研究, 2025, 42(2): 299-311.
LIU Ge, ZHAO Hengqian, HUANGFU Xiadan, FU Hancong, WANG Pan, XU Fei, HAN Tian. Spatiotemporal evolution of long-term vegetation NPP in Ordos based on GEE[J]. Arid Zone Research, 2025, 42(2): 299-311.
[1] | Xiao J F, Chevallier F, Gomez C, et al. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years[J]. Remote Sensing of Environment, 2019, 233: 111383. |
[2] | 朴世龙, 岳超, 丁金枝, 等. 试论陆地生态系统碳汇在“碳中和”目标中的作用[J]. 中国科学: 地球科学, 2022, 52(7): 1419-1426. |
[Piao Shilong, Yue Chao, Ding Jinzhi, et al. Perspectives on the role of terrestrial ecosystems in the ‘carbon neutrality’ strategy[J]. Science China Earth Sciences, 2022, 52(7): 1419-1426. ] | |
[3] | 朱文泉, 陈云浩, 徐丹, 等. 陆地植被净初级生产力计算模型研究进展[J]. 生态学杂志, 2005, 24(3): 296-300. |
[Zhu Wenquan, Chen Yunhao, Xu Dan, et al. Advances in terrestrial net primary productivity (NPP) estimation models[J]. Chinese Journal of Ecology, 2005, 24(3): 296-300. ] | |
[4] | Cao S, Sanchez-Azofeifa G A, Duran S M, et al. Estimation of aboveground net primary productivity in secondary tropical dry forests using the Carnegie-Ames-Stanford Approach (CASA) model[J]. Environmental Research Letters, 2016, 11(7): 075004. |
[5] | Bulut S, Günlü A, Şatr O. Estimating net primary productivity of semi-arid Crimean pine stands using biogeochemical modelling, remote sensing, and machine learning[J]. Ecological Informatics, 2023, 76: 102137. |
[6] | Xiao F J, Liu Q F, Xu Y Q. Estimation of terrestrial net primary productivity in the Yellow River Basin of China using light use efficiency model[J]. Sustainability, 2022, 14(12): 7399. |
[7] | 陶波, 葛全胜, 李克让, 等. 陆地生态系统碳循环研究进展[J]. 地理研究, 2001, 20(5): 564-575. |
[Tao Bo, Ge Quansheng, Li Kerang, et al. Progress in the studies on carbon cycle in terrestrial ecosystem[J]. Geographical Research, 2001, 20(5): 564-575. ] | |
[8] | 方精云, 朴世龙, 赵淑清. CO2失汇与北半球中高纬度陆地生态系统的碳汇[J]. 植物生态学报, 2001, 25(5): 594-602. |
[Fang Jingyun, Piao Shilong, Zhao Shuqing. The carbon sink: The role of the middle and high latitudes terrestrial ecosystems in the Northern Hemisphere[J]. Chinese Journal of Plant Ecology, 2001, 25(5): 594-602. ] | |
[9] |
徐小锋, 田汉勤, 万师强. 气候变暖对陆地生态系统碳循环的影响[J]. 植物生态学报, 2007, 31(2): 175-188.
doi: 10.17521/cjpe.2007.0023 |
[Xu Xiaofeng, Tian Hanqin, Wan Shiqiang. Climate warming impacts on carbon cycling in terrestrial ecosystems[J]. Chinese Journal of Plant Ecology, 2007, 31(2): 175-188. ]
doi: 10.17521/cjpe.2007.0023 |
|
[10] | 王爽, 李庆旭, 张彪. 锡林郭勒盟净初级生产力时空变化及其气候影响[J]. 生态学杂志, 2021, 40(3): 825-834. |
[Wang Shuang, Li Qingxu, Zhang Biao. Spatiotemporal variation of net primary productivity and its climatic driving factors in Xilingol League[J]. Chinese Journal of Ecology, 2021, 40(3): 825-834. ]
doi: 10.13292/j.1000-4890.202103.028 |
|
[11] | 郭连发, 来全, 伊博力, 等. 2000—2014年呼伦贝尔沙地河流湿地植被NPP时空变化及驱动力分析[J]. 水土保持研究, 2017, 24(6): 267-272. |
[Guo Lianfa, Lai Quan, Yi Boli, et al. Spatiotemporal changes of net primary productivity of river wetland and its driving factors in Hulun Buir Sandy Land in 2000-2014[J]. Research of Soil and Water Conservation, 2017, 24(6): 267-272. ] | |
[12] |
任丽雯, 王兴涛, 刘明春, 等. 石羊河流域植被净初级生产力时空变化及驱动因素[J]. 干旱区研究, 2023, 40(5): 818-828.
doi: 10.13866/j.azr.2023.05.14 |
[Ren Liwen, Wang Xingtao, Liu Mingchun, et al. Temporal and spatial changes and the driving factors of vegetation NPP in Shiyang River Basin[J]. Arid Zone Research, 2023, 40(5): 818-828. ]
doi: 10.13866/j.azr.2023.05.14 |
|
[13] | 潘竟虎, 李真. 2001—2012年西北干旱区植被净初级生产力时空变化[J]. 生态学杂志, 2015, 34(12): 3333-3340. |
[Pan Jinghu, Li Zhen. Temporal spatial change of vegetation net primary productivity in the arid region of Northwest China during 2001 and 2012[J]. Chinese Journal of Ecology, 2015, 34(12): 3333-3340. ] | |
[14] |
刘一丹, 姚晓军, 李宗省, 等. 气候变化和土地利用覆盖变化对河西地区植被净初级生产力的影响[J]. 干旱区研究, 2024, 41(1): 169-180.
doi: 10.13866/j.azr.2024.01.16 |
[Liu Yidan, Yao Xiaojun, Li Zongxing, et al. Impacts of climate change and land use/cover change on the net primary productivity of vegetation in Hexi Region, Northwest China[J]. Arid Zone Research, 2024, 41(1): 169-180. ]
doi: 10.13866/j.azr.2024.01.16 |
|
[15] | Li C H, Sun H, Wu X D, et al. An approach for improving soil water content for modeling net primary production on the Qinghai-Tibetan Plateau using Biome-BGC model[J]. Catena, 2020, 184: 104253. |
[16] | Potter C, Randerson J, Field C, et al. Terrestrial ecosystem production: a process model based on global satellite and surface data[J]. Global Biogeochemical Cycles, 1993, 7(4): 811-841. |
[17] | 朱文泉, 潘耀忠, 龙中华, 等. 基于GIS和RS的区域陆地植被NPP估算——以中国内蒙古为例[J]. 遥感学报, 2005, 9(3): 300-307. |
[Zhu Wenquan, Pan Yaozhong, Long Zhonghua, et al. Estimating net primary productivity of terrestrial vegetation based on GIS and RS: A case study in Inner Mongolia, China[J]. Journal of Remote Sensing, 2005, 9(3): 300-307. ] | |
[18] | 张祯祺, 蔡惠文, 张平平, 等. 基于GEE遥感云平台的三江源植被碳源/汇时空变化研究[J]. 自然资源遥感, 2023, 35(1): 231-242. |
[Zhang Zhenqi, Cai Huiwen, Zhang Pingping, et al. A GEE-based study on the temporal and spatial variations in the carbon source/sink function of vegetation in the Three-River Headwaters region[J]. Remote Sensing for Natural Resources, 2023, 35(1): 231-242. ] | |
[19] | 郭睿妍, 田佳, 杨志玲, 等. 基于GEE平台的黄河流域森林植被净初级生产力时空变化特征[J]. 生态学报, 2022, 42(13): 5437-5445. |
[Guo Ruiyan, Tian Jia, Yang Zhiling, et al. Spatio-temporal variation characteristics of forest net primary productivity in the Yellow River Basin based on Google Earth Engine cloud platform[J]. Acta Ecologica Sinica, 2022, 42(13): 5437-5445. ] | |
[20] | 李晶, 闫星光, 闫萧萧, 等. 基于GEE云平台的黄河流域植被覆盖度时空变化特征[J]. 煤炭学报, 2021, 46(5): 1439-1450. |
[Li Jing, Yan Xingguang, Yan Xiaoxiao, et al. Temporal and spatial variation characteristic of vegetation coverage in the Yellow River Basin based on GEE cloud platform[J]. Journal of China Coal Society, 2021, 46(5): 1439-1450. ] | |
[21] | 刘彦平, 张国红, 杨跃军, 等. 《京津风沙源治理工程二期规划》战略调整[J]. 林业调查规划, 2013, 38(6): 92-95. |
[Liu Yanping, Zhang Guohong, Yang Yuejun, et al. Strategic adjustment on the Second Phase of Planning of Beijing-Tianjin Sandstorm-Control Project[J]. Forest Inventory and Planning, 2013, 38(6): 92-95. ] | |
[22] | 赵恒谦, 刘轩绮, 刘哿, 等. 京津风沙源区NPP时空变化及其对治理工程实施的响应[J]. 生态学报, 2024, 44(6): 2406-2419. |
[Zhao Hengqian, Liu Xuanqi, Liu Ge, et al. Spatio-temporal variation of net primary productivity in the Beijing-Tianjin sandstorm source area and its response to the implementation of control projects[J]. Acta Ecologica Sinica, 2024, 44(6): 2406-2419. ] | |
[23] | 弥宏卓, 于振海, 白艳, 等. 内蒙古自治区“三北”防护林体系建设工程状况分析[J]. 内蒙古林业调查设计, 2023, 46(1): 1-4, 29. |
[Mi Hongzhuo, Yu Zhenhai, Bai Yan, et al. Analysis of Three-North Forest Shelterbelt System construction program in Inner Mongolia Autonomous Region[J]. Inner Mongolia Forestry Investigation and Design, 2023, 46(1): 1-4, 29. ] | |
[24] | 鄂尔多斯市人民政府. 鄂尔多斯市国土空间生态修复规划(2021—2035年)的通知[EB/OL]. https://www.ordos.gov.cn/zzms/slh_zcwjx/202306/t20230609_3438197.html, 2023-05-12. |
[Ordos Municipal People’s Government. Notice of the ecological restoration planning of land space in Ordos City (2021-2035)[EB/OL]. https://www.ordos.gov.cn/zzms/slh_zcwjx/202306/t20230609_3438 197.html, 2023-05-12.] | |
[25] |
滑永春, 萨如拉, 王冰. 内蒙古草原NPP时空变化及驱动力[J]. 中国沙漠, 2021, 41(5): 130-139.
doi: 10.7522/j.issn.1000-694X.2021.00074 |
[Hua Yongchun, Sa Rula, Wang Bing. Spatial and temporal variation of grassland NPP and its driving forces in Inner Mongolia[J]. Journal of Desert Research, 2021, 41(5): 130-139. ]
doi: 10.7522/j.issn.1000-694X.2021.00074 |
|
[26] | 王俊枝, 萨日盖, 窦银银, 等. 2000—2022年鄂尔多斯高原人类活动对植被覆盖变化的影响[J/OL]. 西安理工大学学报, 1-10[2024-06-25]. |
[Wang Junzhi, Sa Rigai, Dou Yinyin, et al. Effects of human activities on vegetation cover change in the Ordos Plateau during 2000-2022[J/OL]. Journal of Xi’an University of Technology, 1-10[2024-06-25]. ] | |
[27] | 贾龙, 扈吉萍, 吴文瑾, 等. 鄂尔多斯生态系统服务价值核算及其时空动态分析[J]. 自然保护地, 2024, 4(2): 95-107. |
[Jia Long, Hu Jiping, Wu Wenjin, et al. Accounting of Ordos ecosystem service value and its spatiotemporal dynamic analysis[J]. Natural Protected Areas, 2024, 4(2): 95-107. ] | |
[28] | 张保龙, 程文博, 赵宇新, 等. 植被NPP时空变化及其对气候变化的响应——以黄河内蒙古段为例[J]. 内蒙古气象, 2024, 1(1): 9-16. |
[Zhang Baolong, Cheng Wenbo, Zhao Yuxin, et al. Spatio-temporal variation of NPP and its response to climate change——A case study of the Inner Mongolia section of the Yellow River[J]. Meteorology Journal of Inner Mongolia, 2024, 1(1): 9-16. ] | |
[29] |
常屹冉, 张弛, 魏嘉诚, 等. 气候变化和人类活动对内蒙古植被净初级生产力的影响[J]. 草地学报, 2023, 31(11): 3444-3452.
doi: 10.11733/j.issn.1007-0435.2023.11.023 |
[Chang Yiran, Zhang Chi, Wei Jiacheng, et al. Impacts of climate change and human activities on the net primary productivity of vegetation in Inner Mongolia[J]. Acta Agrestia Sinica, 2023, 31(11): 3444-3452. ]
doi: 10.11733/j.issn.1007-0435.2023.11.023 |
|
[30] | Wu C Y, Chen K L, Chongyi E, et al. Improved CASA model based on satellite remote sensing data: Simulating net primary productivity of Qinghai Lake Basin alpine grassland[J]. Geoscientific Model Development, 2022, 15(17): 6919-6933. |
[31] | 张雪蕾, 肖伟华, 王义成. 基于改进的CASA模型三峡库区NPP时空特征及气候驱动机制[J]. 生态学报, 2021, 41(9): 3488-3498. |
[Zhang Xuelei, Xiao Weihua, Wang Yicheng. Temporal-spatial variations of NPP and its climatic driving mechanism in the Three Gorges Reservoir Area based on modified CASA model[J]. Acta Ecologica Sinica, 2021, 41(9): 3488-3498. ] | |
[32] | Bao G, Bao Y H, Qin Z H, et al. Modeling net primary productivity of terrestrial ecosystems in the semi-arid climate of the Mongolian Plateau using LSWI-based CASA ecosystem model[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 46: 84-93. |
[33] |
朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, 31(3): 413-424.
doi: 10.17521/cjpe.2007.0050 |
[Zhu Wenquan, Pan Yaozhong, Zhang Jinshui. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing[J]. Chinese Journal of Plant Ecology, 2007, 31(3): 413-424. ]
doi: 10.17521/cjpe.2007.0050 |
|
[34] | Tian H W, Ji X J, Zhang F M. Spatiotemporal variations of vegetation net primary productivity and its response to meteorological factors across the Yellow River Basin during the period 1981-2020[J]. Frontiers in Environmental Science, 2022, 10: 949564. |
[35] | Xuan W X, Rao L Y. Spatiotemporal dynamics of net primary productivity and its influencing factors in the middle reaches of the Yellow River from 2000 to 2020[J]. Frontiers in Plant Science, 2023, 14: 1043807. |
[36] | 韩梅, 邬晗, 韩柏, 等. 鄂尔多斯地区毛乌素沙地荒漠化形成因素及治理措施[J]. 农业与技术, 2021, 41(18): 111-115. |
[Han Mei, Wu Han, Han Bai, et al. The formation factors and control measures of desertification in Maowusu Sandy Land in Ordos region[J]. Agriculture and Technology, 2021, 41(18): 111-115. ] | |
[37] | 张丹丹. 基于多源数据的黄河流域植被NPP时空变化及其影响因子分析[D]. 郑州: 郑州大学, 2019. |
[Zhang Dandan. Research on Spatio-temporal Variations in Vegetion Net Primary Productivity and Their Impact Factors in Yellow River Basin Based on Muti-source Data[D]. Zhengzhou: Zhengzhou University, 2019. ] | |
[38] | 黄露, 周伟, 李佳慧, 等. 内蒙古不同类型草地NPP时空动态特征及其气候影响因素分析[J]. 草原与草坪, 2019, 39(2): 1-9. |
[Huang Lu, Zhou Wei, Li Jiahui, et al. Analysis on spatial-temporal dynamics of different types grassland NPP and its climate influencing factors in Inner Mongolia[J]. Grassland and Turf, 2019, 39(2): 1-9. ] | |
[39] | 田智慧, 张丹丹, 赫晓慧, 等. 2000—2015年黄河流域植被净初级生产力时空变化特征及其驱动因子[J]. 水土保持研究, 2019, 26(2): 255-262. |
[Tian Zhihui, Zhang Dandan, He Xiaohui, et al. Spatiotemporal variations in vegetation net primary productivity and their driving factors in Yellow River Basin from 2000 to 2015[J]. Research of Soil and Water Conservation, 2019, 26(2): 255-262. ] | |
[40] | 王强, 张廷斌, 易桂花, 等. 横断山区2004—2014年植被NPP时空变化及其驱动因子[J]. 生态学报, 2017, 37(9): 3084-3095. |
[Wang Qiang, Zhang Tingbin, Yi Guihua, et al. Tempo-spatial variations and driving factors analysis of net primary productivity in the Hengduan Mountain area from 2004 to 2014[J]. Acta Ecologica Sinica, 2017, 37(9): 3084-3095. ] | |
[41] | 贾路, 于坤霞, 邓铭江, 等. 黑河流域年NPP时空变化及其对气候因子的响应[J]. 应用基础与工程科学学报, 2023, 31(3): 523-540. |
[Jia Lu, Yu Kunxia, Deng Mingjiang, et al. Spatio-temporal changes of annual NPP in the Heihe River Basin and its response to climate factors[J]. Journal of Basic Science and Engineering, 2023, 31(3): 523-540. ] | |
[42] | 黄瑾依, 孙倩, 黄永刚, 等. 干旱区典型县植被覆盖度的动态变化和景观格局分析[J/OL]. 环境科学, 1-19 [2024-06-25]. |
[Huang Jinyi, Sun Qian, Huang Yonggang, et al. Landscape pattern and dynamic change of fractional vegetation cover in a typical country in Arid Region[J/OL]. Environmental Science, 1-19[2024-06-25].] | |
[43] | He P X, Ma X L, Han Z M, et al. Uncertainties of gross primary productivity of Chinese grasslands based on multi-source estimation[J]. Frontiers in Environmental Science, 2022, 10: 928351. |
[44] | Xiao J F, Davis K J, Urban N M, et al. Uncertainty in model parameters and regional carbon fluxes: A model-data fusion approach[J]. Agricultural and Forest Meteorology, 2014, 189/190: 175-186. |
[45] | Liu L Q, Gao X, Cao B H, et al. Comparing different light use efficiency models to estimate the gross primary productivity of a cork oak plantation in northern China[J]. Remote sensing (Basel, Switzerland), 2022, 14(22): 5905. |
[1] | 王思楠, 吴英杰, 王宏宙, 黎明扬, 王飞, 张雯颖, 马小茗, 于向前. 基于地理探测器的鄂尔多斯干旱时空变化驱动因素分析[J]. 干旱区研究, 2024, 41(12): 1981-1991. |
[2] | 李梦帆, 郑江华, 钱安良, 李家辉, 阿迪力江·帕尔合提, 王哲, 马丽莎, 王南. 基于决策树的天山冰湖提取方法研究[J]. 干旱区研究, 2024, 41(10): 1699-1707. |
[3] | 姚金玺, 肖成志, 张志, 王浪, 张焜. 基于GEE多源遥感数据的干旱区植被地物类型提取[J]. 干旱区研究, 2024, 41(1): 157-168. |
[4] | 赵雨琪, 魏天兴. 1990—2020年黄土高原典型县域植被覆盖变化及影响因素[J]. 干旱区研究, 2024, 41(1): 147-156. |
[5] | 李小雨, 贾科利, 魏慧敏, 陈睿华, 王怡婧. 基于随机森林算法的土壤含盐量预测[J]. 干旱区研究, 2023, 40(8): 1258-1267. |
[6] | 任丽雯, 王兴涛, 刘明春, 王大为. 石羊河流域植被净初级生产力时空变化及驱动因素[J]. 干旱区研究, 2023, 40(5): 818-828. |
[7] | 吴惠敏, 党晓宏, 翟波, 魏亚娟, 李小乐. 西鄂尔多斯珍稀濒危沙冬青及伴生种对土壤特征的影响[J]. 干旱区研究, 2023, 40(5): 767-776. |
[8] | 王怡恩, 饶良懿. 气候因素和人类活动对砒砂岩区植被净初级生产力的影响[J]. 干旱区研究, 2023, 40(12): 1982-1995. |
[9] | 吴雪晴, 张乐乐, 高黎明, 李炎坤, 刘轩辰. 青海湖流域NPP动态变化及驱动力[J]. 干旱区研究, 2023, 40(11): 1824-1832. |
[10] | 陈玉森,艾柯代·艾斯凯尔,王永东. 1994—2018年哈萨克斯坦首都圈植被NPP时空变化特征及驱动因素[J]. 干旱区研究, 2022, 39(6): 1917-1929. |
[11] | 赵蒙恩,闫庆武,刘政婷,王文铭,李桂娥,吴振华. 鄂尔多斯市土壤侵蚀时空演变及影响因子分析[J]. 干旱区研究, 2022, 39(6): 1819-1831. |
[12] | 白壮壮, 崔建新, 丁晓辉. 1986—2015年鄂尔多斯高原沙漠化及其驱动因素研究[J]. 干旱区研究, 2020, 37(3): 749-. |
[13] | 刘华民, 王立新, 杨劼, 梁存柱, 王炜. 农牧民气候变化适应意愿及影响因素——以鄂尔多斯市乌审旗为例[J]. 干旱区研究, 2013, 30(1): 89-95. |
[14] | 杨帆, 杨贵生, 邢璞, 徐英, 邢莲莲. 内蒙古鄂尔多斯高原鸟类区系组成及其特征[J]. 干旱区研究, 2012, 29(3): 450-456. |
[15] | 张璞进, 杨劼, 赵利清. 鄂尔多斯高原藏锦鸡儿(Caragana tibetica)个体层次对干旱的生态适应性[J]. 干旱区研究, 2011, 28(5): 839-848. |
|