Spatial and temporal distribution characteristics of cloud water resources in the Tarim Basin in summer
Received date: 2024-09-02
Revised date: 2024-12-10
Online published: 2025-02-21
Scientifically assessing cloud water resources and studying the distribution and evolution of cloud water resources is of great significance to guide the local weather modification work, accelerate the development and utilization of aerial water resources, and alleviate water shortage. In this study, the monthly reanalysis data of ERA-5 from 1979 to 2022 and the EOF decomposition method were used to analyze the spatial and temporal distribution characteristics of cloud water resources in the Tarim Basin in summer. The following results were revealed. (1) Regarding spatial distribution, the atmospheric water vapor content in the Tarim Basin was higher in the west, lower in the east, and slightly higher in the north than in the south. The water vapor content of the whole layer in the basin displayed an increasing trend in the past 44 years. (2) The two modes of EOF revealed that the water vapor transport in the basin in summer was mainly consistent in the whole region, followed by more water vapor transport in the southwest and less in the northeast. (3) The total cloud cover and cloud water content in summer were higher in the north and south and lower in the middle of the Tarim Basin, and the cloud cover in the mountainous areas was higher than that in the oasis and desert areas. Meanwhile, the cloud ice water content in the north was higher than that in the south of the basin in summer, and the cloud liquid water content in the south was higher than that in the north. The largest cloud liquid water content in the basin was concentrated in the Pamir Plateau, and the peak value of the cloud ice water content was located in the Tianshan Mountains. (4) The mountainous areas and the northern slope of the Kunlun Mountains were dominated by water-bearing medium and low clouds. In contrast, the cloud water thickness in the Tianshan Mountains was deeper, and the cloud ice water content was larger. A significant increase in cloud water content was observed in the mountainous areas of the Kunlun Mountains and the northern slope of the Kunlun Mountains, while a decrease was observed in the Tianshan Mountains after 2000. The results of this study provide a scientific basis for assessing aerial cloud water content and weather modification operations in the Tarim Basin.
MA Chao , LIU Yan , LIU Jing , YANG Lianmei . Spatial and temporal distribution characteristics of cloud water resources in the Tarim Basin in summer[J]. Arid Zone Research, 2025 , 42(2) : 223 -235 . DOI: 10.13866/j.azr.2025.02.04
[1] | 丁贤荣. 高山增水效应及其水资源意义[J]. 山地学报, 2003, 21(6): 681-685. |
[Ding Xianrong. Water increasing effect of mountains and its value of water resources[J]. Journal of Mountain Science, 2003, 21(6): 681-685. ] | |
[2] | 彭宽军, 陈勇航, 林雄, 等. 利用CERES卫星遥感资料研究新疆三大山区低层云水资源[C]// 中国气象学会气候资源应用研究委员会, 国家气候中心. 第26届中国气象学会年会气候资源应用研究分会场论文集, 2009. |
[Peng Kuanjun, Chen Yonghang, Lin Xiong, et al. CERES satellite remote sensing data were used to study the low-level cloud water resources in the three mountainous areas of Xinjiang[C]// Climate Resources Application Research Committee of Chinese Meteorological Societe, China Climate Center, the 26th Annual Meeting of the Chinese Meteorological Society, 2009. ] | |
[3] | 张家宝, 袁玉江. 试论新疆气候对水资源的影响[J]. 自然资源学报, 2002, 17(1): 28-34. |
[Zhang Jiabao, Yuan Yujiang. A tentative discussion on the impact of climate on surface water resources in Xinjiang[J]. Journal of Natural Resources, 2002, 17(1): 28-34. ] | |
[4] | 陈勇航, 黄建平, 王天河, 等. 西北地区不同类型云的时空分布及其与降水的关系[J]. 应用气象学报, 2005, 16(6): 717-727, 862. |
[Chen Yonghang, Huang Jianping, Wang Tianhe, et al. Temporal and spatial distribution of the different clouds over northwestern China with the relation to precipitation[J]. Journal of Applied Meteorological Science, 2005, 16(6): 717-727, 862. ] | |
[5] | 尹宪志, 王毅荣, 徐文君, 等. 祁连山空中云水资源开发潜力研究新进展[J]. 沙漠与绿洲气象, 2020, 14(6): 134-140. |
[Yin Xianzhi, Wang Yirong, Xu Wenjun, et al. Recent progress in research on potential for the development of cloud water resources over Qilian Mountains area[J]. Desert and Oasis Meteorology, 2020, 14(6): 134-140. ] | |
[6] | 余杰, 蔡森, 周毓荃, 等. 2000—2019年西北地区云水资源时空特征研究[J]. 气象学报, 2024, 82(4): 476-489. |
[Yu Jie, Cai Miao, Zhou Yuquan, et al. Spatiotemporal characteristics of cloud water resources in Northwest China from 2000 to 2019[J]. Acta Meteorologica Sinica, 2024, 82(4): 476-489. ] | |
[7] | 李家叶, 李铁键, 王光谦, 等. 空中水资源及其降水转化分析[J]. 科学通报, 2018, 63(26): 2785-2796. |
[Li Jiaye, Li Tiejian, Wang Guangqian, et al. Atmospheric water resource and precipitation conversion[J]. Chinese Science Bulletin, 2018, 63(26): 2785-2796. ] | |
[8] | 黄美元. 我国人工降水亟待解决的问题和发展思路[J]. 气候与环境研究, 2011, 16(5): 543-550. |
[Huang Meiyuan. Urgent problems and thinking of development for precipitation enhancement in China[J]. Climatic and Environmental Research, 2011, 16(5): 543-550. ] | |
[9] | Cai Miao, Zhou Yuquan, Liu Jianzhao, et al. Quantifying the cloud water resource: Methods based on observational diagnosis and cloud model simulation[J]. Journal of Meteorological Research, 2020, 34(6): 1256-1270. |
[10] | 刘菊菊, 游庆龙, 周毓荃, 等. 基于ERA-Interim的中国云水量时空分布和变化趋势[J]. 高原气象, 2018, 37(6): 1590-1604. |
[Liu Juju, You Qinglong, Zhou Yuquan, et al. Spatiotemporal distribution and trend of cloud water content in China based on ERA-Interim reanalysis[J]. Plateau Meteorology, 2018, 37(6): 1590-1604. ] | |
[11] | 杨大生, 王普才. 中国地区夏季6—8月云水含量的垂直分布特征[J]. 大气科学, 2012, 36(1): 89-101. |
[Yang Dasheng, Wang Pucai. Characteristics of vertical distributions of cloud water contents over China during summer[J]. Chinese Journal of Atmospheric Sciences, 2012, 36(1): 89-101. ] | |
[12] | 刘洪利, 朱文琴, 宜树华, 等. 中国地区云的气候特征分析[J]. 气象学报, 2003, 61(4): 466-473. |
[Liu Hongli, Zhu Wenqin, Yi Shuhua, et al. Climatic analysis of the cloud over China[J]. Acta Meteorologica Sinica, 2003, 61(4): 466-473. ] | |
[13] | 张沛, 姚展予, 贾烁, 等. 六盘山地区空中水资源特征及水凝物降水效率研究[J]. 大气科学, 2020, 44(2): 421-434. |
[Zhang Pei, Yao Zhanyu, Jia Shuo, et al. Study of the characteristics of atmospheric water resources and hydrometeor precipitation efficiency over the Liupan Shan area[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(2): 421-434. ] | |
[14] | 石岩, 饶丹. 新疆水资源现状及其可持续利用对策分析[J]. 华北水利水电大学学报(自然科学版), 2015, 36(4): 36-38. |
[Shi Yan, Rao Dan. Analysis on present situation of water resources and sustainable utilization countermeasures of Xinjiang[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2015, 36(4): 36-38. ] | |
[15] | 陈勇航, 邓军英, 张萍, 等. 中天山附近强降水过程中云冰水含量随高度变化特征[J]. 资源科学, 2013, 35(3): 655-664. |
[Chen Yonghang, Deng Junying, Zhang Ping, et al. Vertical distribution of ice water content in clouds during heavy rains around Tianshan Mountain[J]. Resources Science, 2013, 35(3): 655-664. ] | |
[16] | 张小娟, 王军, 黄观, 等. 新疆3大山区云中液态水时空分布特征[J]. 干旱区研究, 2018, 35(4): 846-854. |
[Zhang Xiaojuan, Wang Jun, Huang Guan, et al. Spatiotemporal distribution of cloud liquid water volume over three main mountains in Xinjiang[J]. Arid Zone Research, 2018, 35(4): 846-854. ] | |
[17] | 白磊, 王维霞, 姚亚楠, 等. ERA-Interim 和NCEP/NCAR 再分析数据气温和气压值在天山山区适用性分析[J]. 沙漠与绿洲气象, 2013, 7(3): 51-56. |
[Bai Lei, Wang Weixia, Yao Ya’nan, et al. Reliability of NCEP/NCAR and ERA-Interim reanalysis data on Tianshan Mountainous area[J]. Desert and Oasis Meteorology, 2013, 7(3): 51-56. ] | |
[18] | 石晓兰, 杨青, 姚俊强, 等. 基于ERA-Interim资料的中国天山山区云水含量空间分布特征[J]. 沙漠与绿洲气象, 2016, 10(2): 50-56. |
[Shi Xiaolan, Yang Qing, Yao Junqiang, et al. The spatial distribution of water vapor and cloud water content over Tianshan Mountains, China based on ERA-Interim dataset[J]. Desert and Oasis Meteorology, 2016, 10(2): 50-56. ] | |
[19] | Liu Jin, Liang Hong, Yang Lianmei. Comparative analysis of precipitable water vapor data in the Tarim Basin, China[J]. Advances in Space Research, 2024, 74(7): 2846-2858. |
[20] | Zeng Yong, Yang Lianmei, Tong Zepeng, et al. Seasonal variation in total cloud cover and cloud type characteristics in Xinjiang, China based on FY-4A[J]. Remote Sensing, 2024, 16(15): 2803. |
[21] | 郝小红, 宋敏红, 周梓萱. 夏季青藏高原空中云水资源的时空特征分析[J]. 高原气象, 2020, 39(6): 1339-1347. |
[Hao Xiaohong, Song Minhong, Zhou Zixuan. Temporal and spatial characteristics of water vapor and cloud water over the Qinghai-Xizang Plateau in summer[J]. Plateau Meteorology, 2020, 39(6): 1339-1347. ] | |
[22] | Sun Bo, Zhu Yali, Wang Huijun. The recent interdecadal and interannual variation of water vapor transport over Eastern China[J]. Advances in Atmospheric Sciences, 2011, 28(5): 1039-1048. |
[23] | 刘晶, 刘兆旭, 杨莲梅, 等. 塔里木盆地及其周边地区大气可降水量分布及其与降水关系的研究[J]. 高原气象, 2024, 43(3): 617-634. |
[Liu Jing, Liu Zhaoxu, Yang Lianmei, et al. The characteristics of atmospheric precipitable water vapor distribution and its relationship with precipitation over Tarim Basin and its surrounding area[J]. Plateau Meteorology, 2024, 43(3): 617-634. ] | |
[24] | 王凯, 孙美平, 巩宁刚. 西北地区大气水汽含量时空分布及其输送研究[J]. 干旱区地理, 2018, 41(2): 290-297. |
[Wang Kai, Sun Meiping, Gong Ninggang. Spatial and temporal distribution and transportation of the water vapor in the northwestern China[J]. Arid Land Geography, 2018, 41(2): 290-297. ] | |
[25] | Huang Wei, Feng Song, Chen Jianhui, et al. Physical mechanisms of summer precipitation variations in the Tarim Basin in Northwestern China[J]. Journal of Climate, 2015, 28(9): 3579-3591. |
[26] | Zhao Yong, Huang Anning, Zhou Yang, et al. Impact of the middle and upper tropospheric cooling over Central Asia on the summer rainfall in the Tarim Basin, China[J]. Journal of Climate, 2014, 27(12): 4721-4732. |
[27] | 李帅, 陈勇航, 侯小刚, 等. FY-2F云量产品在新疆区域的评估及检验[J]. 干旱区研究, 2021, 38(4): 1031-1039. |
[Li Shuai, Chen Yonghang, Hou Xiaogang, et al. Evaluation of FY-2F satellite cloud products in Xinjiang[J]. Arid Zone Research, 2021, 38(4): 1031-1039. ] | |
[28] | 张强, 杨金虎, 王朋岭, 等. 西北地区气候暖湿化的研究进展与展望[J]. 科学通报, 2023, 68(14): 1814-1828. |
[Zhang Qiang. Yang Jinhu, Wang Pengling, et al. Progress and prospect on climate warming and humidification in Northwest China[J]. Chinese Science Bulletin, 2023, 68(14): 1814-1828. ] | |
[29] | 丁一汇, 柳艳菊, 徐影, 等. 全球气候变化的区域响应: 中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562. |
[Ding Yihui, Liu Yanju, Xu Ying, et al. Regional responses to global climate change: Progress and prospects for trend, causes, and projection of climatic warming-wetting in Northwest China[J]. Advances in Earth Science, 2023, 38(6): 551-562. ] | |
[30] | 张红丽, 韩富强, 张良, 等. 西北地区气候暖湿化空间与季节差异分析[J]. 干旱区研究, 2023, 40(4): 517-531. |
[Zhang Hongli, Han Fuqiang, Zhang Liang, et al. Analysis of spatial and seasonal variations in climate warming and humidification in Northwest China[J]. Arid Zone Research, 2023, 40(4): 517-531. ] | |
[31] | 张强, 杨金虎, 马鹏里, 等. 西北地区气候暖湿化增强东扩特征及其形成机制与重要环境影响[J]. 干旱气象, 2023, 41(3): 351-358. |
[Zhang Qiang, Yang Jinhu, Ma Pengli, et al. The enhancement and eastward expansion of climate warming and humidification, formation mechanism and important environmental impacts in Northwest China[J]. Journal of Arid Meteorology, 2023, 41(3): 351-358. ] | |
[32] | 王瑞英, 周文韬, 任丹阳, 等. 基于ERA5资料的陕西地区云水资源评估[J]. 陕西气象, 2023(6): 10-16. |
[Wang Ruiying, Zhou Wentao, Ren Danyang, et al. Assessment of cloud water resources in Shaanxi Province based on ERA5 data[J]. Journal of Shaanxi Meteorology, 2023(6): 10-16. ] | |
[33] | 张玉欣, 马学谦, 韩辉邦, 等. 2014—2018年青海省云水资源时空分布特征[J]. 干旱区研究, 2021, 38(5): 1254-1262. |
[Zhang Yuxin, Ma Xueqian, Han Huibang, et al. Analysis of spatial and temporal distribution characteristics of cloud water resources in Qinghai Province from 2014 to 2018[J]. Arid Zone Research, 2021, 38(5): 1254-1262. ] | |
[34] | 把黎, 尹宪志, 庞朝云, 等. 祁连山地区夏季南坡与北坡空中云水资源差异性分析[J]. 干旱区研究, 2022, 39(5): 1345-1359. |
[Ba Li, Yin Xianzhi, Pang Zhaoyun, et al. Characteristics of the difference in air water resources between the north and south slopes of the Qilian Mountains in the summer[J]. Arid Zone Research, 2022, 39(5): 1345-1359. ] |
/
〈 |
|
〉 |