Weather and Climate

Ideal numerical tests of topographic precipitation around the Helan Mountain under different wind field structures

  • LI Chao ,
  • LONG Xiao ,
  • CAO Yiqing ,
  • HAN Zifei ,
  • WANG Hao ,
  • ZHENG Jingyuan
Expand
  • 1. College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
    2. Hebei Meteorological Disaster Prevention Center, Shijiazhuang 050021, Hebei, China
    3. Hebei Climate Center, Shijiazhuang 050021, Hebei, China

Received date: 2024-01-19

  Revised date: 2024-04-16

  Online published: 2024-08-22

Abstract

Topographic precipitation is one of the main types of precipitation in northwest China. It is therefore of great significance to achieve a deeper understanding of the mechanism of topographic precipitation formation to improve forecasting ability. In this study, the vertical distribution structure of different types of wind fields was constructed based on the high-altitude environmental parameters during 20 heavy rains around the eastern foothills of Helan Mountain, and the em_hill2d_x module of WRF model was used to conduct ideal numerical experiments on the influence of different types of wind field on precipitation distribution. The results show that: (1) The dry air flow of two different types of wind fields (with/without wind shear) on the windward slope of the mountain range has an uplift effect of terrain on the windward slope air flow. The leeward slope fluctuation showed different characteristics; under the condition of single layer uniform flow, the leeward slope is mainly represented by a mountain wave propagating in the vertical direction. Under the wind field with low-level wind shear, the leeward side mainly reflects the characteristics of the dorsal wave, and the gravity wave has the characteristics of coexisting horizontal and vertical propagation. With the increase in low-level wind shear, the characteristics of the horizontal propagation of the dorsal wave become increasingly obvious. (2) The simulated precipitation under the condition of a single layer of uniform wet airflow is mainly located on the windward side, and the precipitation intensity is relatively weak on the leeward side under the influence of strong downhill wind. When the wind speed increases to more than 10 m·s-1, the large cloud water content area on the windward side converges to the top of the mountain, and the precipitation intensity increases significantly. In the presence of low-level wind shear flow moving over the mountains, the test result shows that both the windward and leeward side there is a strong rainfall center, with a deep convective system on the leeward slope, and the precipitation on both sides increases with the increase in wind speed. (3) The simulation results under the condition of low-altitude east wind and high-altitude west wind show that the appearance of high-altitude west wind strengthens the updraft on the windward slope and is not conducive to the transport of water vapor downstream; the precipitation on the leeward side is significantly weakened; the precipitation is more concentrated near the upper reaches of the mountain peak; and the intensity also increases to a certain extent. This is one of the main reasons for the significant difference in precipitation characteristics between the two sides of the Helan Mountain.

Cite this article

LI Chao , LONG Xiao , CAO Yiqing , HAN Zifei , WANG Hao , ZHENG Jingyuan . Ideal numerical tests of topographic precipitation around the Helan Mountain under different wind field structures[J]. Arid Zone Research, 2024 , 41(8) : 1272 -1287 . DOI: 10.13866/j.azr.2024.08.02

References

[1] Medina S, Houze R A. Air motions and precipitation growth in Alpine storms[J]. Quarterly Journal of the Royal Meteorological Society, 2003, 129: 345-371.
[2] Rotunno R, Ferretti R. Orographic effects on rainfall in MAP cases IOP 2b and IOP 8[J]. Quarterly Journal of the Royal Meteorological Society, 2003, 129: 373-390.
[3] Houze, Medina S. Turbulence as a mechanism for orographic precipitation enhancement[J]. Journal of the Atmospheric Sciences, 2005, 62: 3599-3623.
[4] Picard L, Mass C. The sensitivity of orographic precipitation to flow direction: An idealized modeling approach[J]. Journal of Hydro meteorology, 2017, 18(6): 1673-1688.
[5] Morales A, Posselt D J, Morrison H. Which combinations of environmental conditions and microphysical parameter values produce a given orographic precipitation distribution?[J]. Journal of the Atmospheric Sciences, 2021, 78(2): 619-638.
[6] 黄玉霞, 王宝鉴, 黄武斌, 等. 我国西北暴雨的研究进展[J]. 暴雨灾害, 2019, 38(5): 515-525.
  [ Huang Yuxia, Wang Baojian, Huang Wubin, et al. A review on rainstorm research in northwest China[J]. Torrential Rain and Disasters, 2019, 38(5): 515-525. ]
[7] 钟水新. 地形对降水的影响机理及预报方法研究进展[J]. 高原气象, 2020, 39(5): 1122-1132.
  [ Zhong Shuixin. Advances in the study of the influence mechanism and forecast methods for orographic precipitation[J]. Plateau Meteorology, 2020, 39(5): 1122-1132. ]
[8] 李子良. 地形降水试验和背风回流降水机制[J]. 气象, 2006, 32(5): 10-15.
  [ Li Ziliang. Simulations of precipitation induced by reversal flow in lee of mountain[J]. Meteorological Monthly, 2006, 32(5): 10-15. ]
[9] Scorer R S. Theory of waves in lee of mountains[J]. Quarterly Journal of the Royal Meteorological Society, 1949, 75: 41-56.
[10] Lin Yuh-Lang, Wang T A. Flow regimes and transient dynamics of two-dimensional stratified flow over an isolated mountain ridge[J]. Journal of the Atmospheric Sciences, 1996, 53(1): 139-158.
[11] 李子良. 三维多层流动过孤立山脉产生的山脉重力波的数值试验[J]. 北京大学学报: 自然科学版, 2006, 42(3): 351-356.
  [ Li Ziliang. Numerical simulations of mountain gravity waves generated by multi-layer flow over an isolated mountain[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006, 42(3): 351-356. ]
[12] Xue H, Giorgetta M A. A large-eddy simulation study on the diurnally evolving nonlinear trapped lee waves over a two-dimensional steep mountain[J]. Journal of the Atmospheric Sciences, 2021, 78(2): 399-415.
[13] Colle, Brian A. Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective[J]. Journal of the Atmospheric Sciences, 2004, 61(5): 588-606.
[14] 杨婷, 闵锦忠, 张申龑. 分层气流条件下地形降水的二维理想数值试验[J]. 气象科学, 2017, 37(2): 222-230.
  [ Yang Ting, Min Jinzhong, Zhang Shenyan. Two-dimensional idealized numerical experiments on the orographic rainfall with a stratified flow over mountain[J]. Journal of the Meteorological Sciences, 2017, 37(2): 222-230. ]
[15] 郭欣, 郭学良, 付丹红, 等. 钟形地形动力抬升和重力波传播与地形云和降水形成关系研究[J]. 大气科学, 2013, 37(4): 786-800.
  [ Guo Xin, Guo Xueliang, Fu Danhong, et al. Relationship between bell-shaped terrain dynamic forcing, mountain wave propagation, and orographic clouds and precipitation[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(4): 786-800. ]
[16] Galewsky J, Sobel A. Moist dynamics and orographic precipitation in northern and Central California during the new year’s flood of 1997[J]. Monthly Weather Review, 2005, 133(6): 1594-1612.
[17] Lorente-Plazas R, Mitchell T P, Mauger G, et al. Local enhancement of extreme precipitation during atmospheric rivers as simulated in a regional climate model[J]. Journal of Hydrometeorology, 2018, 19(9): 1429-1446.
[18] Kirshbaum D J, Smith R B. Temperature and moist-stability effects on midlatitude orographic precipitation[J]. Quarterly Journal of the Royal Meteorological Society, 2008, 634: 134.
[19] Rotunno R, Houze R A. Lessons on orographic precipitation from the mesoscale alpine programme[J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133: 811-830.
[20] Mott R, Scipión D, Schneebeli M, et al. Orographic effects on snow deposition patterns in mountainous terrain[J]. Journal of Geophysical Research-Atmospheres, 2014, 119: 1419-1439.
[21] 陶林科, 杨侃, 胡文东, 等. “7·30”大暴雨的数值模拟及贺兰山地形影响分析[J]. 沙漠与绿洲气象, 2014, 8(4): 32-39.
  [ Tao Linke, Yang Kan, Hu Wendong, et al. The contribution of Helan mountain to the formation of a heavy rainstorm occurred over Yinchuan Plain by numerical simulation[J]. Desert and Oasis Meteorology, 2014, 8(4): 32-39. ]
[22] 王晖, 隆霄, 温晓培, 等. 2012年宁夏“7·29”大暴雨过程的数值模拟研究[J]. 高原气象, 2017, 36(1): 268-281.
  [ Wang Hui, Long Xiao, Wen Xiaopei, et al. Numerical simulation studies on “2012?7?29” rainstorm process in Ningxia[J]. Plateau Meteorology, 2017, 36(1): 268-281.]
[23] 陈晓娟, 王咏青, 毛璐, 等. 贺兰山区两次极端暴雨动力作用数值模拟分析[J]. 干旱区研究, 2020, 37(3): 680-688.
  [ Chen Xiaojuan, Wang Yongqing, Mao Lu, et al. Numerical simulation analysis of the dynamic effects of terrain on two extreme rainstorms on Helan Mountain[J]. Arid Zone Research, 2020, 37(3): 680-688. ]
[24] 陈豫英, 苏洋, 杨银, 等. 贺兰山东麓极端暴雨的中尺度特征[J]. 高原气象, 2021, 40(1): 47-60.
  [ Chen Yuying, Su Yang, Yang Yin, et al. The mesoscale characteristics of extreme rainstorm in the eastern region of Helan Mountain[J]. Plateau Meteorology, 2021, 40(1): 47-60. ]
[25] Sever G, Lin Y L. Dynamical and physical processes associated with orographic precipitation in a conditionally unstable uniform flow: Variation in basic wind speed[J]. Journal of the Atmospheric sciences, 2016, 74(2): 449-466.
[26] 刘晶, 李娜, 陈春艳. 新疆北部一次暖区暴雪过程锋面结构及中尺度云团分析[J]. 高原气象, 2018, 37(1): 158-166.
  [ Liu Jing, Li Na, Chen Chunyan. The frontal structure and analysis on mesoscale cloud characteristic during a warm zone blizzard process in north Xinjiang[J]. Plateau Meteorology, 2018, 37(1): 158-166. ]
[27] 赵庆云, 张武, 陈晓燕, 等. 一次六盘山两侧强对流暴雨中尺度对流系统的传播特征[J]. 高原气象, 2018, 37(3): 767-776.
  [ Zhao Qingyun, Zhang Wu, Chen Xiaoyan, et al. Propagation characteristics of mesoscale convection system in a event of severe convection rainstorm over both sides of Liupanshan Mountains[J]. Plateau Meteorology, 2018, 37(3): 767-776. ]
[28] 姜志斌. 贺兰山地区气候变化和极端天气特征分析[D]. 兰州: 兰州大学, 2016.
  [ Jiang Zhibin. Analysis of Regional Climate Change and Extreme Weather Characteristics in Helan Mountains Region[D]. Lanzhou: Lanzhou University, 2016. ]
[29] Chen Yuying, Li Jianping, Li Xin, et al. Spatio-temporal distribution of the rainstorm in the east side of the Helan Mountain and the possible causes of its variability[J]. Atmospheric Research, doi: https://doi.org/10.1016/j.atmosres.2021.105469.
[30] Skamarock W C, Klemp J B, Dudhia J, et al. A description of the advanced research WRF version 3[J]. NCAR Technical Note NCAR/TN-475+STR. June 2008. Mesoscale and Microscale Meteorology Division. National Center for Atmospheric Research, 2008, 475.
[31] 李驰钦, 左群杰, 高守亭, 等. 青藏高原上空一次重力波过程的识别与天气影响分析[J]. 气象学报, 2018, 76(6): 904-919.
  [ Li Chiqin, Zuo Qunjie, Gao Shouting, et al. Identification of a gravity wave process over the Tibetan Plateau and its impact on the weather[J]. Acta Meteorologica Sinica, 2018, 76(6): 904-919. ]
[32] Smolarkiewicz P K, Rotunno R. Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices[J]. Journal of the Atmospheric Sciences, 1989, 46: 1154-1164.
[33] Smolarkiewicz P K, Rotunno R. Low Froude number flow past three dimensional obstacles. Part II: Upwind flow reversal zone[J]. Journal of the Atmospheric Sciences, 1990, 47: 1498-1511.
[34] 《西北暴雨》编写组. 西北暴雨[M]. 北京: 气象出版社, 1992.
  [ Editorial Group of “Northwest Rainstorm”. Northwest Rainstorm[M]. Beijing: China Meteorological Press, 1992. ]
[35] 朱乾根, 林锦瑞, 寿邵文, 等. 天气学原理和方法[M]. 北京: 科学出版社, 2007: 320-400.
  [ Zhu Qiangen, Lin Jinrui, Shou Shaowen, et al. Synoptic Principles and Methods[M]. Beijing: Science Press, 2007: 320-400.]
[36] 李超, 隆霄, 曹怡清, 等. 贺兰山东麓20次暴雨过程环流形势及低空急流特征[J]. 干旱区研究, 2022, 39(6): 1753-1767.
  [ Li Chao, Long Xiao, Cao Yiqing, et al. Circulation pattern and LLJ characteristics of 20 rainstorm events in the eastern region of the Helan Mountain[J]. Arid Zone Research, 2022, 39(6): 1753-1767. ]
[37] 苏洋, 陈豫英, 杨侃, 等. 低空急流与贺兰山东麓暴雨过程的相关性研究[J]. 气象, 2023, 49(10): 1171-1186.
  [ Su Yang, Chen Yuying, Yang Kan, et al. Correlations between low-level jet and rainstorm process in the eastern foot of Helan Mountains[J]. Meteorological Monthly, 2023, 49(10): 1171-1186. ]
[38] 曹怡清, 隆霄, 李超, 等. 低空急流对贺兰山东麓两次暴雨影响的数值模拟研究[J]. 干旱区研究, 2022, 39(6): 1739-1752.
  [ Cao Yiqing, Long Xiao, Li Chao, et al. Numerical study on the effect of low-level jet on two rainstorms on the east side of the Helan Mountain[J]. Arid Zone Research, 2022, 39(6): 1739-1752. ]
Outlines

/