Weather and Climate

Performance evaluation of three daily precipitation products in the upper reaches of the Ili River

  • YIN Ruiqi ,
  • LI Qiongfang ,
  • CHEN Qihui ,
  • ZHANG Jingfang ,
  • ZHANG Wei ,
  • LIN Yongquan ,
  • FANG Kaiyue
Expand
  • 1. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, Jiangsu, China
    2. Yangtze Institute for Conservation and Green Development, Nanjing 210098, Jiangsu, China
    3. Hohhot Hydrology Water Resource Center, Hohhot 010020, Inner Mongolia, China
    4. Inner Mongolia Autonomous Region Water Conservancy Development Center, Hohhot 010020, Inner Mongolia, China

Received date: 2023-09-12

  Revised date: 2024-01-04

  Online published: 2024-04-26

Abstract

The topographic conditions of the bell in the upper reaches of the Ili River lead to an extremely uneven spatial distribution of precipitation, and it is difficult for limited observation stations to truly determine the spatial and temporal changes in daily precipitation. Therefore, it is necessary to assess the applicability of different precipitation products in the upper reaches of the Ili River. On the basis of seven statistical indicators and the generalized three-cornered hat method, we determined the accuracy and uncertainty of three precipitation products (GPM, ERA5, and CHIRPS) in the upper reaches of the Ili River. The results show that (1) ERA5 showed the highest correlation between POD and FAR, and its moderate and heavy rain precipitation estimates were the most accurate. The root mean square error of GPM was the smallest, and POD and FAR were the lowest. CHIRPS showed the smallest relative bias and mean error, its POD and FAR values were between those of GPM and ERA5, and its light rain precipitation estimates were the most accurate. The accuracy of rainstorm precipitation estimated by the three precipitation products was not high, but ERA5 was better than GPM and CHIRPS. (2) The uncertainty of daily precipitation of ERA5 was between that of GPM and CHIRPS, and the signal-to-noise ratio was the largest. GPM showed the lowest uncertainty of daily precipitation, and the signal-to-noise ratio was between that of ERA5 and CHIRPS. CHIRPS had the largest uncertainty of daily precipitation and the smallest signal-to-noise ratio. (3) The daily precipitation quality of ERA5 was better than that of GPM and CHIRPS, and it can be used to analyze the precipitation characteristics in the upper reaches of the Ili River. GPM had the lowest uncertainty of daily precipitation and is most likely to improve its quality through system calibration. The present findings provide support for hydrological simulation and water resource change analysis in the upper reaches of the Ili River.

Cite this article

YIN Ruiqi , LI Qiongfang , CHEN Qihui , ZHANG Jingfang , ZHANG Wei , LIN Yongquan , FANG Kaiyue . Performance evaluation of three daily precipitation products in the upper reaches of the Ili River[J]. Arid Zone Research, 2024 , 41(4) : 540 -549 . DOI: 10.13866/j.azr.2024.04.02

References

[1] 郭利丹, 井沛然, 张玉阔. 中国国际河流研究热点与前沿的可视化分析[J]. 世界地理研究, 2022, 31(3): 490-502.
  [Guo Lidan, Jing Peiran, Zhang Yukuo. Visualization analysis on the research hotspots and frontiers of China’s international rivers[J]. World Regional Studies, 2022, 31(3): 490-502.]
[2] 张健荣. 由新疆国际河流水利开发引发的思考[J]. 社会观察, 2007(11): 17-18.
  [Zhang Jianrong. Reflections on the development of international river water conservancy in Xinjiang[J]. Social Outlook, 2007(11): 17-18.]
[3] 姜冬昕, 景晓琴, 银燕, 等. 影响伊犁河谷地区冬季降水的主要气象要素及其与降水率的统计关系[J]. 气象科学, 2022, 42(5): 676-689.
  [Jiang Dongxin, Jing Xiaoqin, Yin Yan, et al. Meteorological factors influencing winter time precipitation in the Ili River Valley and their statistical correlation with precipitation rate[J]. Journal of the Meteorological Sciences, 2022, 42(5): 676-689.]
[4] Lu D, Yong B. Evaluation and hydrological utility of the latest GPM IMERG V5 and GSMaP V7 precipitation products over the Tibetan Plateau[J]. Remote Sensing, 2018, 10(12): 2022.
[5] 王姣妍. 基于MSWEP降水产品的新疆干旱时空特征分析[J]. 干旱区研究, 2022, 39(5): 1398-1409.
  [Wang Jiaoyan. Study on spatiotemporal characteristics of drought in Xinjiang based on Multi-Source Weighted-Ensemble Precipitation multi-source merged precipitation product[J]. Arid Zone Research, 2022, 39(5): 1398-1409.]
[6] Zhang Q, Shi P, Singh V P, et al. Spatial downscaling of TRMM-based precipitation data using vegetative response in Xinjiang, China[J]. International Journal of Climatology, 2017, 37(10): 3895-3909.
[7] 王正, 黄粤, 刘铁, 等. 近60 a巴尔喀什湖水量平衡变化及其影响因素[J]. 干旱区研究, 2022, 39(2): 400-409.
  [Wang Zheng, Huang Yue, Liu Tie, et al. Analyzing the water balance of Lake Balkhash and its influencing factors[J]. Arid Zone Research, 2022, 39(2): 400-409.]
[8] 周文婧, 夏自强, 黄峰, 等. 巴尔喀什湖流域降水量及其年内分配的变化特征[J]. 水电能源科学, 2013, 31(6): 10-13.
  [Zhou Wenjing, Xia Ziqiang, Huang Feng, et al. Variation characteristics of precipitation and its annual distribution in Balkash Lake Basin[J]. Water Resources and Power, 2013, 31(6): 10-13.]
[9] 段伟利, 邹珊, 陈亚宁, 等. 1879—2015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
  [Duan Weili, Zou Shan, Chen Yaning, et al. Analysis of water level changes in Lake Balkhash and its main influencing factors during 1879-2015[J]. Advances in Earth Science, 2021, 36(9): 950-961.]
[10] 张玉杰, 王宁练, 杨雪雯, 等. 基于多源遥感数据的1970—2020年巴尔喀什湖动态监测[J]. 干旱区地理, 2022, 45(2): 499-511.
  [Zhang Yujie, Wang Ninglian, Yang Xuewen, et al. Dynamic monitoring of Balkhash Lake from 1970 to 2020 based on multi-source remote sensing data[J]. Arid Land Geography, 2022, 45(2): 499-511.]
[11] Liu C Y, Aryastana P, Liu G R, et al. Assessment of satellite precipitation product estimates over Bali Island[J]. Atmospheric Research, 2020, 244: 105032.
[12] Paredes-Trejo F J, Barbosa H A, Kumar T V L. Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil[J]. Journal of Arid Environments, 2017, 139: 26-40.
[13] Katsanos D, Retalis A, Michaelides S. Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period[J]. Atmospheric Research, 2016, 169: 459-464.
[14] Guo H, Bao A, Liu T, et al. Meteorological drought analysis in the Lower Mekong Basin using satellite-based long-term CHIRPS product[J]. Sustainability, 2017, 9(6): 901.
[15] 温婷婷, 郭英香, 董少睿, 等. 1979—2017年CRU、ERA5、CMFD格点降水数据在青藏高原适用性评估[J]. 干旱区研究, 2022, 39(3): 684-697.
  [Wen Tingting, Guo Yingxiang, Dong Shaorui, et al. Assessment of CRU, ERA5, CMFD grid precipitation data for the Tibetan Plateau from 1979 to 2017[J]. Arid Zone Research, 2022, 39(3): 684-697.]
[16] 牛怡莹, 李春兰, 王军, 等. 内蒙古ERA5再分析降水数据性能评估与极端降水时空特征分析[J]. 干旱区地理, 2023, 46(9): 1418-1431.
  [Niu Yiying, Li Chunlan, Wang Jun, et al. Performance evaluation of ERA5 reanalysis precipitation data and spatiotemporal characteristics of extreme precipitation in Inner Mongolia[J]. Arid Land Geography, 2023, 46(9): 1418-1431.]
[17] 王颖慧, 丁建丽, 李晓航, 等. 伊犁河流域土地利用/覆被变化对生态系统服务价值的影响——基于强度分析模型[J]. 生态学报, 2022, 42(8): 3106-3118.
  [Wang Yinghui, Dingjianli, Li Xiaohang, et al. Impact of LUCC on ecosystem services values in the Yili River Basin based on an intensity analysis model[J]. Acta Ecologica Sinica, 2022, 42(8): 3106-3118.]
[18] 张茹, 雍斌, 曾岁康. GPM卫星降水产品在中国大陆的精度评估[J]. 人民长江, 2021, 52(5): 50-59.
  [Zhang Ru, Yong Bin, Zeng Suikang. Evaluation of GPM satellite precipitation products over Mainland China[J]. Yangtze River, 2021, 52(5): 50-59.]
[19] 孟宪贵, 郭俊建, 韩永清. ERA5再分析数据适用性初步评估[J]. 海洋气象学报, 2018, 38(1): 91-99.
  [Meng Xiangui, Guo Junjian, Han Yongqing. Preliminarily assessment of ERA5 reanalysis data[J]. Journal of Marine Meteorology, 2018, 38(1): 91-99.]
[20] 卫林勇, 江善虎, 任立良, 等. 多源卫星降水产品在不同省份的精度评估与比较分析[J]. 中国农村水利水电, 2019, 445(11): 38-44.
  [Wei Linyong, Jiang Shanhu, Ren Liliang, et al. Evaluation and comparison of multi-source satellite precipitation products in different climate regions over Mainland China[J]. China Rural Water and Hydropower, 2019, 445(11): 38-44.]
[21] Tang G, Zeng Z, Long D, et al. Statistical and hydrological comparisons between TRMM and GPM level-3 products over a midlatitude basin: Is day-1 IMERG a good successor for TMPA 3B42V7?[J]. Journal of Hydrometeorology, 2016, 17(1): 121-137.
[22] Tan M L, Santo H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia[J]. Atmospheric Research, 2018, 202: 63-76.
[23] Xu R, Tian F, Yang L, et al. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(2): 910-924.
[24] Ebert E E. Methods for Verifying Satellite Precipitation Estimates[M]. Measuring Precipitation from Space:EURAINSAT and the Future. Dordrecht: Springer Netherlands, 2007: 345-356.
[25] 肖开提·多莱特. 新疆降水量级标准的划分[J]. 新疆气象, 2005(3): 7-8.
  [Xiaokaiti Duolaite. Formulation of precipitation intensity standard of Xinjiang[J]. Desert and Oasis Meteorology, 2005(3):7-8.]
[26] 蒋慧敏, 刘春云, 古丽巴哈·伊米提. 乌鲁木齐地区不同等级降水日数特征分析[J]. 新农业, 2020(21): 73-75.
  [Jiang Huimin, Liu Chunyun, Guliba Imiti. Analysis on the characteristics of precipitation days of different grades in Urumqi area[J]. New Agriculture, 2020(21): 73-75.]
[27] Koot L, Viron O, Dehant V. Atmospheric angular momentum time-series: characterization of their internal noise and creation of a combined series[J]. Journal of Geodesy, 2006, 79: 663-674.
[28] Galindo F J, Palacio J. Estimating the instability of N correlated clocks[C]// 31st Annual Precise Time and Time Interval Meeting, Dona Point, 1999.
[29] Awange J L, Ferreira V G, Forootan E, et al. Uncertainties in remotely sensed precipitation data over Africa[J]. International Journal of Climatology, 2016, 36(1): 303-323.
[30] Sun W, Sun Y, Li X, et al. Evaluation and correction of GPM IMERG precipitation products over the capital circle in Northeast China at multiple spatiotemporal scales[J]. Advances in Meteorology, 2018, 2018: 1-14.
[31] Zhang Y, Hanati G, Danierhan S, et al. Evaluation and comparison of daily GPM/TRMM precipitation products over the Tianshan Mountains in China[J]. Water, 2020, 12(11): 3088.
[32] Chen Y, Sharma S, Zhou X, et al. Spatial performance of multiple reanalysis precipitation datasets on the southern slope of central Himalaya[J]. Atmospheric Research, 2021, 250: 105365.
[33] 姚飛, 杨秀芹, 刘慕嘉, 等. ERA5再分析降水数据在长江三角洲的性能评估[J]. 水土保持学报, 2022, 36(4): 178-189.
  [Yao Fei, Yang Xiuqin, Liu Mujia, et al. Performance evaluation of ERA5 reanalysis precipitation data in the Yangtze River Delta[J]. Journal of Soil and Water Conservation, 2022, 36(4): 178-189.]
[34] Pe?a Guerrero M D, Umirbekov A, Tarasova L, et al. Comparing the performance of high-resolution global precipitation products across topographic and climatic gradients of Central Asia[J]. International Journal of Climatology, 2022, 42(11): 5554-5569.
[35] Chen S L, Xiong L H, Ma q M, et al. Improving daily spatial precipitation estimates by merging gauge observation with multiple satellite-based precipitation products based on the geographically weighted ridge regression method[J]. Journal of Hydrology, 2020, 589: 125156.
[36] 沈艳, 潘旸, 徐宾, 等. 最优插值法在对中国自动站降水量空间分析中的参数优化[J]. 成都信息工程学院学报, 2012, 27(2): 219-224.
  [Shen Yan, Pan Yang, Xu Bin, et al. Parameter improvements of hourly automatic weather stations precipitation analysis by optimal interpolation over China[J]. Journal of Chengdu University of Information Technology, 2012, 27(2): 219-224.]
[37] Turlapaty A C, Anantharaj V G, Younan N H, et al. Precipitation data fusion using vector space transformation and artificial neural networks[J]. Pattern Recognition Letters, 2010, 31(10): 1184-1200.
[38] Wu Z, Zhang Y, Sun Z, et al. Improvement of a combination of TMPA (or IMERG) and ground-based precipitation and application to a typical region of the East China Plain[J]. Science of the Total Environment, 2018, 640: 1165-1175.
Outlines

/