Ecology and Environment

Spatiotemporal evolution and prediction of carbon stock in Urumqi City based on PLUS and InVEST models

  • LI Jiake ,
  • SHAO Zhanlin
Expand
  • College of Public Administration, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China

Received date: 2023-09-11

  Revised date: 2024-01-14

  Online published: 2024-04-01

Abstract

Land use changes have an important impact on carbon stock changes in terrestrial ecosystems, and studying carbon stock changes in terrestrial ecosystems under different development scenarios is conducive to the optimization of spatial layout and coordination of the relationship between land use and ecological environmental protection. In this study, the PLUS and InVEST models were combined, and the characteristics of land use changes in Urumqi from 2000 to 2020 were analyzed using data from multiple drivers to predict and simulate the land carbon stock under the natural development scenario, ecological protection priority scenario, and cropland protection priority scenario in 2030. Results show that from 2000 to 2020, the quantity of forest land, water area, construction area, and unused land increases, whereas the area of arable land and grassland decreases. In 2030, the natural development scenario continues the previous development pattern, and the increase in the area of construction land is 18.29%. Under the ecological protection priority scenario, the expansion rate of construction land is effectively controlled, and the increase has slowed down to 4.73%. The area of arable land under the priority arable land protection scenario is 171 km2 more than under the natural development scenario, and the effect of cultivated land conservation is significant. From 2000 to 2020, and carbon stocks decrease by a total of 8.5×106 t. The total carbon stock in 2030 under the natural growth scenario decreases by 4.065×106 t compared to 2020. the ecological protection priority scenario is 7.519×105 t higher than the natural growth scenario. the cropland protection priority scenario is 1.979×106 t lower than the natural growth scenario.Therefore, in the future development plan of Urumqi City, the responsibility of protecting arable land should be implemented, and the expansion of construction land to high-carbon-density land such as forest land, grassland, and arable land should be controlled. Furthermore, the land use layout should be optimized to improve the level of regional carbon stock.

Cite this article

LI Jiake , SHAO Zhanlin . Spatiotemporal evolution and prediction of carbon stock in Urumqi City based on PLUS and InVEST models[J]. Arid Zone Research, 2024 , 41(3) : 499 -508 . DOI: 10.13866/j.azr.2024.03.14

References

[1] Udara Willhelm Abeydeera L H, Wadu Mesthrige J, Samarasinghalage T I. Global research on carbon emissions: A scientometric review[J]. Sustainability, 2019, 11(14): 3972.
[2] Willcock S, Phillips O L, Platts P J, et al. Land cover change and carbon emissions over 100 years in an A frican biodiversity hotspot[J]. Global Change Biology, 2016, 22(8): 2787-2800.
[3] Wang Z, Zeng J, Chen W. Impact of urban expansion on carbon storage under multi-scenario simulations in Wuhan, China[J]. Environmental Science and Pollution Research, 2022, 29(30): 45507-45526.
[4] 朱志强, 马晓双, 胡洪. 基于耦合FLUS-InVEST模型的广州市生态系统碳储量时空演变与预测[J]. 水土保持通报, 2021, 41(2): 222-229, 239.
  [Zhu Zhiqiang, Ma Xiaoshuang, Hu Hong. Spatio-temporal evolution and prediction of ecosystem carbon stocks in Guangzhou City by coupling FLUS-InVEST models[J]. Bulletin of Soil and Water Conservation, 2021, 41(2): 222-229, 239.]
[5] 杨潋威, 赵娟, 朱家田, 等. 基于PLUS和InVEST模型的西安市生态系统碳储量时空变化与预测[J]. 自然资源遥感, 2022, 34(4): 175-182.
  [Yang Nuanwei, Zhao Juan, Zhu Jiatian, et al. Spatial-temporal change and prediction of carbon stock in the ecosystem of Xi’an based on PLUS and InVEST models[J]. Remote Sensing of Natural Resources, 2022, 34(4): 175-182.]
[6] 雒舒琪, 胡晓萌, 孙媛, 等. 耦合PLUS-InVEST模型的多情景土地利用变化及其对碳储量影响[J]. 中国生态农业学报, 2023, 31(2): 300-314.
  [Luo Shuqi, Hu Xiaomeng, Sun Yuan, et al. Multi-scenario land use change and its impact on carbon storage based on coupled PLUS-InVEST model[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 300-314.]
[7] Anindita S, Sleutel S, Vandenberghe D, et al. Land use impacts on weathering, soil properties, and carbon storage in wet Andosols, Indonesia[J]. Geoderma, 2022, 423: 115963.
[8] Islam I, Cui S, Hoque M Z, et al. Dynamics of tree outside forest land cover development and ecosystem carbon storage change in Eastern Coastal Zone, Bangladesh[J]. Land, 2022, 11(1): 76.
[9] 李忠佩, 王效举. 红壤丘陵区土地利用方式变更后土壤有机碳动态变化的模拟[J]. 应用生态学报, 1998, 9(4): 30-35.
  [Li Zhongpei, Wang Xiaoju. Simulation of soil organic carbon dynamic after changing land use pattern in hilly red soil region[J]. Chinese Journal of Applied Ecology, 1998, 9(4): 30-35.]
[10] 杨玉姣, 陈云明, 曹扬. 黄土丘陵区油松人工林生态系统碳密度及其分配[J]. 生态学报, 2014, 34(8): 2128-2136.
  [Yang Yujiao, Chen Yunming, Cao Yang. Carbon density and distribution of Pinus tabulaeformis plantation ecosystem in Hilly Loess Plateau[J]. Acta Ecologica Sinica, 2014, 34(8): 2128-2136.]
[11] Tang X, Zhao X, Bai Y, et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey[J]. Proceedings of the National Academy of Sciences, 2018, 115(16): 4021-4026.
[12] 凌思源, 高子滢, 马闯, 等. 基于CASA模型的天津地区植被净初级生产力及植被碳汇量估测[J]. 天津农业科学, 2022, 28(12): 69-75, 81.
  [Ling Siyuan, Gao Ziying, Ma Chuang, et al. Estimation of net primary productivity of vegetation and vegetation carbon sink in Tianjin area based on CASA model[J]. Tianjin Agricultural Science, 2022, 28(12): 69-75, 81.]
[13] Zhao J, Xie H, Ma J, et al. Integrated remote sensing and model approach for impact assessment of future climate change on the carbon budget of global forest ecosystems[J]. Global and Planetary Change, 2021, 203: 103542.
[14] Lindeskog M, Smith B, Lagergren F, et al. Accounting for forest management in the estimation of forest carbon balance using the dynamic vegetation model LPJ-GUESS: Implementation and evaluation of simulations for Europe[J]. Geoscientific Model Development, 2021, 14(10): 6071-6112.
[15] Singh P, Benbi D K. Modeling soil organic carbon with DNDC and RothC models in different wheat-based cropping systems in north-western India[J]. Communications in Soil Science and Plant Analysis, 2020, 51(9): 1184-1203.
[16] Nelson E, Sander H, Hawthorne P, et al. Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models[J]. PLoS One, 2010, 5(12): 14327.
[17] Polasky S, Nelson E, Pennington D, et al. The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the state of minnesota[J]. Environmental and Resource Economics, 2011, 48(2): 219-242.
[18] Zhang F, Zhan J, Zhang Q, et al. Impacts of land use/cover change on terrestrial carbon stocks in Uganda[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2017, 101: 195-203.
[19] Piyathilake I, Udayakumara E P N, Ranaweera L V, et al. Modeling predictive assessment of carbon storage using InVEST model in Uva Province, Sri Lanka[J]. Modeling Earth Systems and Environment, 2022, 8(2): 2213-2223.
[20] 朱丽亚, 胡克, 孙爽, 等. 基于InVEST模型的辽宁省海岸带碳储量时空变化研究[J]. 现代地质, 2022, 36(1): 96-104.
  [Zhu Liya, Hu Ke, Sun Shuang, et al. Research on the spatiotemporal variation of carbon storage in the coastal zone of Liaoning Province based on InVEST model[J]. Geoscienc, 2022, 36(1): 96-104.]
[21] 卢雅焱, 徐晓亮, 李基才, 等. 基于InVEST模型的新疆天山碳储量时空演变研究[J]. 干旱区研究, 2022, 39(6): 1896-1906.
  [Lu Yayan, Xu Xiaoliang, Li Jicai, et al. Research on the spatio-temporal variation of carbon storage in the Xinjiang Tianshan Mountains based on the InVEST model[J]. Arid Zone Research, 2022, 39(6): 1896-1906.]
[22] 陆汝成, 黄贤金, 左天惠, 等. 基于CLUE-S和Markov复合模型的土地利用情景模拟研究——以江苏省环太湖地区为例[J]. 地理科学, 2009, 29(4): 577-581.
  [Lu Rucheng, Huang Xianjin, Zuo Tianhui, et al. Land use scenarios simulation based on CLUE-S and Markov composite model—a case study of Taihu Lake Rim in Jiangsu Province[J]. Scientia Geographica Sinica, 2009, 29(4): 577-581.]
[23] Li J, Gong J, Guldmann J M, et al. Carbon dynamics in the northeastern qinghai-tibetan plateau from 1990 to 2030 using landsat land use/cover change data[J]. Remote Sensing, 2020, 12(3): 528.
[24] 史名杰, 武红旗, 贾宏涛, 等. 基于MCE-CA-Markov和InVEST模型的伊犁谷地碳储量时空演变及预测[J]. 农业资源与环境学报, 2021, 38(6): 1010-1019.
  [Shi Mingjie, Wu Hongqi, Jia Hongtao, et al. Temporal and spatial evolution and prediction of carbon stocks in Yili Valley based on MCE-CA-Markov and InVEST models[J]. Journal of Agricultural Resources and Environment, 2021, 38(6): 1010-1019.]
[25] 李俊, 杨德宏, 吴锋振, 等. 基于PLUS与InVEST模型的昆明市土地利用变化动态模拟与碳储量评估[J]. 水土保持通报, 2023, 43(1): 378-387.
  [Li Jun, Yang Dehong, Wu Fengzhen, et al. Dynamic simulation of land use changes and assessment of carbon storage in Kunming City based on PLUS and InVEST models[J]. Bulletin of Soil and Water Conservation, 2023, 43(1): 378-387.]
[26] 胡丰, 张艳, 郭宇, 等. 基于PLUS和InVEST模型的渭河流域土地利用与生境质量时空变化及预测[J]. 干旱区地理, 2022, 45(4): 1125-1136.
  [Hu Feng, Zhang Yan, Guo Yu, et al. Spatial and temporal changes in land use and habitat quality in the Weihe River Basin based on the PLUS and InVEST models and predictions[J]. Arid Land Geography, 2022, 45(4): 1125-1136.]
[27] 杨洁, 谢保鹏, 张德罡. 基于InVEST和CA-Markov模型的黄河流域碳储量时空变化研究[J]. 中国生态农业学报, 2021, 29(6): 1018-1029.
  [Yang Jie, Xie Baopeng, Zhang Degang. Spatio-temporal evolution of carbon stocks in the Yellow River Basin based on InVEST and CA-Markov models[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1018-1029.]
[28] 韩敏, 徐长春, 隆云霞, 等. 西北干旱区不同土地利用情景下的碳储量及碳源/汇变化模拟与预估[J]. 水土保持通报, 2022, 42(3): 335-344.
  [Han Min, Xu Changchun, Long Yunxia, et al. Simulation and prediction of changes in carbon storage and carbon source/sink under different land use scenarios in arid region of Northwest China[J]. Bulletin of Soil and Water Conservation, 2022, 42(3): 335-344.]
[29] 陈宁, 辛存林, 唐道斌, 等. 中国西北地区多情景土地利用优化与碳储量评估[J]. 环境科学, 2023, 44(8): 1-16.
  [Chen Ning, Xin Cunlin, Tang Daobin, et al. Multi-scenario land use optimization and carbon storage assessment in Northwest China[J]. Environmental Science, 2023, 44(8): 1-16.]
[30] 丁岳, 王柳柱, 桂峰, 等. 基于InVEST模型和PLUS模型的环杭州湾生态系统碳储量[J]. 环境科学, 2023, 44(6): 1-12.
  [Ding Yue, Wang Liuzhu, Gui Feng, et al. Ecosystem carbon storage in Hangzhou Bay Area based on InVEST and PLUS models[J]. Environmental Science, 2023, 44(6): 1-12.]
[31] 刘洋, 张军, 周冬梅, 等. 基于InVEST模型的疏勒河流域碳储量时空变化研究[J]. 生态学报, 2021, 41(10): 4052-4065.
  [Liu Yang, Zhang Jun, Zhou Dongmei, et al. Temporal and spatial variation of carbon storage in the Shule River Basin based on InVEST model[J]. Acta Ecologica Sinica, 2021, 41(10): 4052-4065.]
Outlines

/