Ecology and Environment

Ecological health assessment of the alpine wetland landscape in the Heihe River source area based on vigor, organization, and resilience

  • SUN Weijie ,
  • QIAO Bin ,
  • YU Hongyan ,
  • ZHAO Tong ,
  • CHEN Qi
Expand
  • 1. Key Laboratory of Disaster Prevention and Mitigation of Qinghai Province, Xining 810001, Qinghai, China
    2. Institute of Meteorological Science of Qinghai Province, Xining 810001, Qinghai, China
    3. College of Earth and Environmental Sciences, Center for Glacier and Desert Research, Lanzhou University, Lanzhou 730000, Gansu, China
    4. Qinghai Qilian Mountain Nature Reserve Administration, Xining 810008, Qinghai, China
    5. Service Guarantee Center of Qilian Mountain National Park in Qinghai, Xining 810008, Qinghai, China

Received date: 2023-03-08

  Revised date: 2023-11-01

  Online published: 2024-03-11

Abstract

The Heihe River source area National Wetland Park, representing a typical alpine wetland, is key for measuring the current and future development of such ecosystems. This study uses land use data to introduce the landscape ecology vulnerability index and establish a comprehensive assessment system of the alpine wetland ecological health based on four aspects: ecosystem vitality, organization, resilience, and ecosystem service value. It quantitatively assesses the spatiotemporal change characteristics of ecological health in the Heihe River source area from 2014 to 2021. The findings reveal that (1) grassland in the Heihe River source area is the main land use type, with high, medium, and low coverage grasslands distributed in a mosaic pattern. The second type is unused land, mainly distributed on both banks of the river and in the northwest; (2) the Heihe River source area consists of both low- and low-vulnerability areas, resulting in an overall low landscape ecology vulnerability; and (3) the Heihe River source area is predominantly rated as healthy and moderately healthy, indicating a relatively high overall ecological environment health level. Throughout 2014 to 2021, the ecosystem of the Heihe River source area was relatively healthy. In the future, the Heihe River source area should prioritize ecological functions, balancing animal husbandry production and ensure the ecosystem’s healthy progression toward achieving “ecological harmony.”

Cite this article

SUN Weijie , QIAO Bin , YU Hongyan , ZHAO Tong , CHEN Qi . Ecological health assessment of the alpine wetland landscape in the Heihe River source area based on vigor, organization, and resilience[J]. Arid Zone Research, 2024 , 41(2) : 301 -313 . DOI: 10.13866/j.azr.2024.02.13

References

[1] 乔斌, 王乃昂, 王义鹏, 等. 山地-绿洲“共轭型”生态牧场理念源起、概念框架与发展模式——以祁连山牧区为例[J]. 生态学报, 2023, 43(21): 1-16.
  [Qiao Bin, Wang Nai’ang, Wang Yipeng, et al. Concept origin conceptual framework and development mode of Mountain-Oasis “Conjugate” Ecological Pasture: Empirical demonstration in Qilian Mountains[J]. Acta Ecologica Sinica, 2023, 43(21): 1-16.]
[2] 邢宇. 青藏高原32年湿地对气候变化的空间响应[J]. 国土资源遥感, 2015, 27(3): 99-107.
  [Xing Yu. Spatial responses of wetland change to climate in 32 years in Qinghai-Tibet Plateau[J]. Remote Sensing for Land and Resources, 2015, 27(3): 99-107.]
[3] Gina Holguin, Patricia Gonzalez-Zamorano, Luz E De-Bashan, et al. Mangrove health in an arid environment encroached by urban development: A case study[J]. Science of the Total Environment, 2006, 363(1-3): 260-274.
[4] 燕守广, 李辉, 李海东, 等. 基于土地利用与景观格局的生态保护红线生态系统健康评价方法——以南京市为例[J]. 自然资源学报, 2020, 35(5): 1109-1118.
  [Yan Shouguang, Li Hui, Li Haidong, et al. Ecosystem health assessment method of eco-redline based on land use and landscape pattern in Nanjing[J]. Journal of Natural Resources, 2020, 35(5): 1109-1118.]
[5] 张月琪, 张志, 江鎞倩, 等. 城市红树林生态系统健康评价与管理对策——以粤港澳大湾区为例[J]. 中国环境科学, 2022, 42(5): 2352-2369.
  [Zhang Yueqi, Zhang Zhi, Jiang Biqian, et al. Ecosystem health assessment and management strategies of urban mangrove: A case study of Guangdong-Hong Kong-Macao Greater Bay Area[J]. China Environmental Science, 2022, 42(5): 2352-2369.]
[6] Rapport David J. What constitutes ecosystem health[J]. Perspectives in Biology and Medicine, 1989, 33: 120-132.
[7] 刘焱序, 彭建, 汪安, 等. 生态系统健康研究进展[J]. 生态学报, 2015, 35(18): 5920-5930.
  [Liu Yanxu, Peng Jian, Wang An, et al. New research progress and trends in ecosystem health[J]. Acta Ecologica Sinica, 2015, 35(18): 5920-5930.]
[8] 周静, 万荣荣. 湿地生态系统健康评价方法研究进展[J]. 生态科学, 2018, 37(6): 209-216.
  [Zhou Jing, Wan Rongrong. Advances in methods of wetland ecosystem health evaluation[J]. Ecological Science, 2018, 37(6): 209-216.]
[9] Whitall David, Bricker Suzanne, Ferreira Joao. Assessment of eutrophication in estuaries: Pressure-state-response and nitrogen source apportionment[J]. Environ Manage, 2007, 40(4): 678-690.
[10] 李雪宁, 徐先英, 郑桂恒, 等. 石羊河下游人工梭梭林健康评价体系构建及应用研究[J]. 干旱区研究, 2022, 39(3): 872-882.
  [Li Xuening, Xu Xianying, Zheng Guiheng, et al. A health evaluation of a Haloxylon ammodendron plantation in the Shiyang river lower reaches[J]. Arid Zone Research, 2022, 39(3): 872-882.]
[11] Robert Costanza, Ralph d’Arge, Rudolf de Groot, et al. The value of the world’s ecosystem services and natural capital[J]. Nature, 1997, 387(15): 253-260.
[12] Datzberger Simone. Why education is not helping the poor. Findings from Uganda[J]. World Development, 2018, 110: 124-139.
[13] Rapport David J, Singh Ashbindu. An eco-health based framework for status of environment reporting[J]. Ecological Indicators, 2006, 6(2): 409-428.
[14] 张藜. 基于景观生态理论的三江源湿地生态健康评价[D]. 西安: 陕西科技大学, 2016.
  [Zhang Li. The Ecological Health Based on the Theory of Landscape Ecology of the Three Rivers Wetlands[D]. Xi’an: Shanxi University of Science and Technology, 2016.]
[15] 朱捷缘, 卢慧婷, 王慧芳, 等. 汶川地震重灾区恢复期生态系统健康评价[J]. 生态学报, 2018, 38(24): 9001-9011.
  [Zhu Jieyuan, Lu Huiting, Wang Huifang, et al. Ecosystem health assessment of the Wenchuan earthquake hard-hit disaster areas during the recovery period[J]. Acta Ecologica Sinica, 2018, 38(24): 9001-9011.]
[16] Yan Yan, Zhao Chunli, Wang Chenxing, et al. Ecosystem health assessment of the Liao River Basin upstream region based on ecosystem services[J]. Acta Ecologica Sinica, 2016, 36(4): 294-300.
[17] 周启刚, 彭春花, 刘栩位, 等. 基于VOR模型的三峡库区消落带2010—2020年生态系统健康评价[J]. 水土保持研究, 2022, 29(5): 310-318.
  [Zhou Qigang, Peng Chunhua, Liu Xuwei, et al. Ecosystem health assessment of water level fluctuating zone in Three Gorges Reservoir Area based on VOR model[J]. Research of Soil and Water Conservation, 2022, 29(5): 310-318.]
[18] Bao Zhongcong, Eshetu Shifaw, Deng Chengbo, et al. Remote sensing-based assessment of ecosystem health by optimizing vigor-organization-resilience model: A case study in Fuzhou City, China[J]. Ecological Informatics, 2022, 72: 101889.
[19] 乔斌, 曹晓云, 孙玮婕, 等. 基于生态系统服务价值和景观生态风险的生态分区识别与优化策略——以祁连山国家公园青海片区为例[J]. 生态学报, 2023, 43(3): 986-1004.
  [Qiao Bin, Cao Xiaoyun, Sun Weijie, et al. Ecological identification and optimization strategies based on ecosystem service value and landscape ecological risk: Taking Qinghai area of Qilian Mountain National Park as an example[J]. Acta Ecologica Sinica, 2023, 43(3): 986-1004.]
[20] 刘梦, 周爱国, 补建伟, 等. 黑河源多金属矿区地质环境承载力评价[J]. 中国矿业, 2018, 27(9): 114-120.
  [Liu Meng, Zhou Aiguo, Bu Jianwei, et al. Geo-environmental carrying capacity assessment of polymetallic mining area in the headwater regions of Heihe river[J]. China Mining Magazine, 2018, 27(9): 114-120.]
[21] Breiman Leo. Random forest[J]. Machine Learning, 2001, 45(1): 5-32.
[22] 杨露. 祁连山地区生态环境质量时空变化及其驱动机制分析[D]. 兰州: 兰州大学, 2021.
  [Yang Lu. Study on the Spatio-Temporal Change of Eco-Environmental Quality and Its Driving Mechanism in Qilian Mountains[D]. Lanzhou: Lanzhou University, 2021.]
[23] 张行, 陈海, 史琴琴, 等. 陕西省景观生态脆弱性时空演变及其影响因素[J]. 干旱区研究, 2020, 37(2): 496-505.
  [Zhang Hang, Chen Hai, Shi Qinqin, et al. Spatiotemporal evolution and driving factors of landscape ecological vulnerability in Shaanxi Province[J]. Arid Zone Research, 2020, 37(2): 496-505.]
[24] 张晓瑶, 虞虎, 张潇, 等. 基于多源数据的三江源国家公园土地生态安全综合评价[J]. 生态学报, 2022, 42(14): 5665-5676.
  [Zhang Xiaoyao, Yu Hu, Zhang Xiao, et al. Comprehensive evaluation of land ecological security in the Sanjiangyuan National Park based on multi-source data[J]. Acta Ecologica Sinica, 2022, 42(14): 5665-5676.]
[25] 李鹏, 俞国燕. 多指标综合评价方法研究综述[J]. 机电产品开发与创新, 2009, 22(4): 24-28.
  [Li Peng, Yu Guoyan. Survey on the multi-index comprehensive evaluation method[J]. Development & Innovation of Machinery & Electrical Products, 2009, 22(4): 24-28.]
[26] 付建新, 曹广超, 郭文炯. 1980—2018年祁连山南坡土地利用变化及其驱动力[J]. 应用生态学报, 2020, 31(8): 2699-2709.
  [Fu Jianxin, Cao Guangchao, Guo Wenjiong. Land use change and its driving force on the southern slope of Qilian Mountains from 1980 to 2018[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2699-2709.]
[27] 宋长春. 湿地生态系统对气候变化的响应[J]. 湿地科学, 2003, 1(2): 122-127.
  [Song Changchun. Influence of global climate change on wetlands[J]. Wetland Science, 2003, 1(2): 122-127.]
[28] 叶伟林, 黄钰涵, 周自强, 等. 祁连山地区近60年气温时空变化特征[J]. 科学技术与工程, 2022, 22(4): 1344-1353.
  [Ye Weilin, Huang Yuhan, Zhou Ziqiang, et al. Temporaland spatial variations of air temperature in the Qilian Mountains during the past 60 years[J]. Science Technology and Engineering, 2022, 22(4): 1344-1353.]
[29] 徐亚男, 刘学录, 李晓丹, 等. 祁连山东段生态敏感性对景观动态变化的响应[J]. 生态科学, 2019, 38(5): 160-167.
  [Xu Yanan, Liu Xuelu, Li Xiaodan, et al. Response of ecological sensitivity to landscape dynamic change in the eastern section of Qilian Mountain[J]. Ecological Science, 2019, 38(5): 160-167.]
[30] 刘宽梅. 祁连山自然保护区景观格局变化及其稳定性研究[D]. 兰州: 兰州大学, 2021.
  [Liu Kuanmei. Study on the Change and Stability of Landscape Pattern in Qilian Mountain Nature Reserve[D]. Lanzhou: Lanzhou University, 2021.]
[31] 刘佳茹. 2005—2018年祁连山生态脆弱性遥感评价研究[D]. 兰州: 西北师范大学, 2021.
  [Liu Jiaru. Remote Sensing Evaluation of Ecological Vulnerability in Qilian Mountains from 2005 to 2018[D]. Lanzhou: Northwest Normal University, 2021.]
[32] 张应丰. 祁连山地湿地生态质量评价[J]. 林业调查规划, 2015, 40(4): 69-72.
  [Zhang Yingfeng. Evaluation on wetland eco-environmental quality of Qilian Mountains in Qinghai Province[J]. Forest Inventory and Planning, 2015, 40(4): 69-72.]
[33] 卢成保, 侯留飞. 青海省祁连县草地退化原因分析及治理对策[J]. 今日畜牧兽医, 2018, 34(2): 62.
  [Lu Chengbao, Hou Liufei. Causes of grassland degradation and countermeasures in Qilian County, Qinghai Province[J]. Today Animal Husbandry and Veterinary Medicine, 2018, 34(2): 62.]
[34] 杨荣荣, 曹广超, 曹生奎, 等. 2000—2018年黑河源区草地NPP时空变化及影响因素分析[J]. 草原与草坪, 2020, 40(2): 79-86.
  [Yang Rongrong, Cao Guangchao, Cao Shengkui, et al. Temporal and spatial variation of grassland NPP and its influencing factors in Heihe source area from 2000 to 2018[J]. Grassland and Turf, 2020, 40(2): 79-86.]
[35] 马恒利. 近40年黑河流域景观生态风险演变及其与地形梯度的关系[D]. 兰州: 兰州交通大学, 2021.
  [Ma Hengli. Evolution of Landscape Ecological Risk and Its Relationship with Terrain Gradient in Heihe River Basin in Recent 40 Years[D]. Lanzhou: Lanzhou Jiaotong University, 2021.]
Outlines

/