Weather and Climate

Climate dry-wet conditions, changes, and their driving factors in Xinjiang

  • Hanlin DONG ,
  • Wenting WANG ,
  • Yun XIE ,
  • YESINALI Aydana ,
  • Yuantian JIANG ,
  • Jiaqi XU
Expand
  • 1. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
    2. Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, Guangdong, China

Received date: 2023-05-05

  Revised date: 2023-09-11

  Online published: 2023-12-18

Abstract

Based on daily observations from 56 meteorological stations from 1961 to 2019, this study analyzed dry-wet conditions, changes, and their underlying driving factors in Xinjiang. The main findings are as follows: (1) In the past 59 years, the Xinjiang climate has changed significantly from dry to wet, with the aridity index (AI) changing at a rate of 0.01·(10a)-1 (P < 0.01). The number of stations with a significant upward trend of AI accounted for 57.1%. (2) The annual precipitation in Xinjiang increased significantly at a rate of 8.6 mm·(10a)-1 from 1961 to 2019, consistent with the change in AI. Conversely, the annual reference evapotranspiration (ET0) showed a significant decreasing trend at a rate of -15.7 mm·(10a)-1. However, it is worth noting that ET0 transitioned around 1990. ET0 continued to decrease before 1990 and then switched to a fluctuating upward trend. (3) Wind speed and relative humidity primarily influenced ET0 variation. Wind speed exhibited a consistent decreasing trend across the entire region, while approximately half of the stations observed a decline in relative humidity. The combined effect of these factors significantly decreased ET0 at nearly 50% of the stations in Xinjiang. Moreover, trends in relative humidity from increasing to decreasing trends and wind speed from decreasing to increasing around 1990 contribute to the differences in ET0 trends between the two periods. The conclusions achieved here provide valuable insights into understanding the dry-wet changes and their underlying driving factors in Xinjiang and have implications for the rational development and use of water resources in this region.

Cite this article

Hanlin DONG , Wenting WANG , Yun XIE , YESINALI Aydana , Yuantian JIANG , Jiaqi XU . Climate dry-wet conditions, changes, and their driving factors in Xinjiang[J]. Arid Zone Research, 2023 , 40(12) : 1875 -1884 . DOI: 10.13866/j.azr.2023.12.01

References

[1] 秦大河. 气候变化科学概论[M]. 北京: 科学出版社, 2018.
[1] [Qin Dahe. Introduction to Climate Change Science[M]. Beijing: Science Press, 2018. ]
[2] IPCC. Climate Change 2021: The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2021.
[3] Wentz F J, Ricciardulli L, Hilburn K, et al. How much more rain will global warming bring?[J]. Science, 2007, 317(5835): 233-235.
[4] 王菱, 谢贤群, 李运生, 等. 中国北方地区40年来湿润指数和气候干湿带界线的变化[J]. 地理研究, 2004, 23(1): 45-54.
[4] [Wang Ling, Xie Xianqun, Li Yunsheng, et al. Changes of humid index and borderline of wet and dry climate zone in northern China over the past 40 years[J]. Geographical Research, 2004, 23(1): 45-54. ]
[5] Fan Mengtian, Xu Jianhua, Chen Yaning, et al. How to sustainably use water resources-A case study for decision support on the water utilization of Xinjiang, China[J]. Water, 2020, 12, 3564.
[6] 张强, 朱飙, 杨金虎, 等. 西北地区气候湿化趋势的新特征[J]. 科学通报, 2021, 66(28-29): 3757-3771.
[6] [Zhang Qiang, Zhu Biao, Yang Jinhu, et al. New characteristics about the climate humidification trend in Northwest China[J]. Chinese Science Bulletin, 2021, 66(28-29): 3757-3771. ]
[7] 陈亚宁, 李玉朋, 李稚, 等. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
[7] [Chen Yaning, Li Yupeng, Li Zhi, et al. Analysis of the impact of global climate change on dryland areas[J]. Advances in Earth Science, 2022, 37(2): 111-119. ]
[8] 施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003, 23(2): 152-164.
[8] [Shi Yafeng, Shen Yongping, Li Dongliang, et al. Discussion on the present climate change from warm-dry to warm wet in in Northwest China[J]. Quaternary Sciences, 2003, 23(2): 152-164. ]
[9] 陈发虎, 谢亭亭, 杨钰杰, 等. 我国西北干旱区“暖湿化”问题及其未来趋势讨论[J]. 中国科学:地球科学, 2023, 53(6): 1246-1262.
[9] [Chen Fahu, Xie Tingting, Yang Yujie, et al. Discussion of the “warming and wetting” trend and its future variation in the dry lands of Northwest China under global warming[J]. Science China Earth Sciences, 2023, 53(6): 1246-1262. ]
[10] 姜大膀, 苏明峰, 魏荣庆, 等. 新疆气候的干湿变化及其趋势预估[J]. 大气科学, 2009, 33(1): 90-98.
[10] [Jiang Dabang, Su Mingfeng, Wei Rongqing, et al. Variation and projection of drought and wet conditions in Xinjiang[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(1): 90-98. ]
[11] 丁一汇, 柳艳菊, 徐影, 等. 全球气候变化的区域响应: 中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
[11] [Ding Yihui, Liu Yanju, Xu Ying, et al. Regional responses to global climate change: Progress and prospect for trend, causes and projection of climatic warming-wetting in Northwest China[J]. Advances in Earth Science, 2023, 38(6): 551-562. ]
[12] 普宗朝, 张山清, 王胜兰, 等. 近48 a新疆干湿气候时空变化特征[J]. 中国沙漠, 2011, 31(6): 1563-1572.
[12] [Pu Zongchao, Zhang Shanqing, Wang Shenglan, et al. The spatial-temporal variation characteristic of dry-wet climate in recent 48 years in Xinjiang Province, China[J]. Journal of Desert Research, 2011, 31(6): 1563-1572. ]
[13] 李红军. 近50年塔里木河流域干湿变化特征及其成因分析[D]. 南京: 南京信息工程大学, 2012.
[13] [Li Hongjun. The Analysis of Variation Characteristics and Cause of Drought-Wetness over Tarim River Basin in Recent 50 a[D]. Nanjing: Nanjing University of Information Science & Technology, 2012. ]
[14] 张红丽, 韩富强, 张良, 等. 西北地区气候暖湿化空间与季节差异分析[J]. 干旱区研究, 2023, 40(4): 517-531.
[14] [Zhang Hongli, Han Fuqiang, Zhang Liang, et al. Analysis of spatial and seasonal variations in climate warming and humidification in Northwest China[J]. Arid Zone Research, 2023, 40(4): 517-531. ]
[15] 姚俊强, 毛炜峄, 陈静, 等. 新疆气候“湿干转折”的信号和影响探讨[J]. 地理学报, 2021, 76(1): 57-72.
[15] [Yao Junqiang, Mao Weiyi, Chen Jing, et al. Signal and impact of wet-to-dry shift over Xinjiang, China[J]. Acta Geographica Sinca, 2021, 76(1): 57-72. ]
[16] Yao Junqiang, Zhao Yong, Chen Yaning, et al. Multi-scale assessments of droughts: A case study in Xinjiang, China[J]. Science of the Total Environment, 2018, 630(1): 444-452.
[17] 高歌, 陈德亮, 任国玉, 等. 1956—2000年中国潜在蒸散量变化趋势[J]. 地理研究, 2006, 25(3): 378-387.
[17] [Gao Ge, Chen Deliang, Ren Guoyu, et al. Trend of potential evapotranspiration over China during 1956 to 2000[J]. Geographical Research, 2006, 25(3): 378-387. ]
[18] 倪广恒, 李新红, 丛振涛, 等. 中国参考作物腾发量时空变化特性分析[J]. 农业工程学报, 2006, 22(5): 1-4.
[18] [Ni Guangheng, Li Xinhong, Cong Zhentao, et al. Temporal and spatial characteristics of reference evapotranspiration in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(5): 1-4. ]
[19] Sun Qiaohong, Zhang Xuebin, Zwiers F, et al. A global, continental, and regional analysis of changes in extreme precipitation[J]. Journal of Climate, 2021, 34(1): 243-258.
[20] 左其亭, 李佳伟, 马军霞, 等. 新疆水资源时空变化特征及适应性利用战略研究[J]. 水资源保护, 2021, 37(2): 21-27.
[20] [Zuo Qiting, Li Jiawei, Ma Junxia, et al. Study on spatio-temporal variation characteristics and adaptive utilization strategy of water resources in Xinjiang[J]. Water Resources Protection, 2021, 37(2): 21-27. ]
[21] Li Jian, Yu Rucong, Yuan Weihua, et al. Changes in duration-related characteristics of late summer precipitation over eastern China in the past 40 years[J]. Journal of Climate, 2011, 24(21): 5683-5690.
[22] Wang Wenting, Yin Shuiqing, Yu Juan, et al. Long-term trends of precipitation and erosivity over Northeast China during 1961-2020[J]. International Soil and Water Conservation Research, 2023, 11(4): 743-754.
[23] 中国气象局. 地面气象观测规范[M]. 北京: 气象出版社, 2013.
[23] [ China Meteorological Administration. Specifications for Surface Meteorological Observation[M]. Beijing: China Meteorological Press, 2013. ]
[24] 马柱国, 符淙斌. 中国北方干旱区地表湿润状况的趋势分析[J]. 气象学报, 2001, 59(6): 741-746.
[24] [Ma Zhuguo, Fu Congbin. The trend analysis of land surface humidity in arid areas of northern China[J]. Acta Meteorologica Sinica, 2001, 59(6): 741-746. ]
[25] 马柱国, 符淙斌, 杨庆, 等. 关于我国北方干旱化及其转折性变化[J]. 大气科学, 2018, 42(4): 951-961.
[25] [Ma Zhuguo, Fu Congbin, Yang Qing, et al. Drying trend in northern China and its shift during 1951-2016[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(4): 951-961. ]
[26] Paredes P, Fontes J C, Azevedo E B, et al. Daily reference crop evapotranspiration in the humid environments of Azores islands using reduced data sets: Accuracy of FAO-PM temperature and Hargreaves-Samani methods[J]. Theoretical and Applied Climatology, 2018, 134: 595-611.
[27] Kendall M G. Rank correlation methods[J]. Journal of the Institute of Actuaries, 1949, 75(1): 140-141.
[28] Mann H B. Nonparametric tests against trend[J]. Econometrica, 1945, 13(3): 245-259.
[29] Sen P K. Estimates of the regression coefficient based on Kendall’s tau[J]. Journal of the American Statistical Association, 1968, 63(324): 1379-1389.
[30] Theil H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis[M]. Henri Theil’s Contributions to Economics and Econometrics. Springer, Dordrecht, 1992: 345-381.
[31] McCuen R H. A sensitivity and error analysis of procedures used for estimating evaporation[J]. Journal of the American Water Resources Association, 1974, 10(3): 486-497.
[32] Gong Lebing, Xu Chongyu, Chen Deliang, et al. Sensitivity of the Penman-Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) Basin[J]. Journal of Hydrology, 2006, 329(3-4): 620-629.
[33] Dong Qing, Wang Weiguang, Shao Quanxi, et al. Historical changes, driving forces, and future projections of the response of reference evapotranspiration to climate change in Xinjiang, China[J]. International Journal of Climatology, 2020, 40(1): 235-254.
[34] Liu Xiaomang, Zhang Dan. Trend analysis of reference evapotranspiration in Northwest China: The roles of changing wind speed and surface air temperature[J]. Hydrological Processes, 2013, 27(26): 3941-3948.
Outlines

/