Spatiotemporal distribution of precipitation in five Central Asian countries based on FY-4A quantitative precipitation estimates
Received date: 2023-02-28
Revised date: 2023-04-18
Online published: 2023-09-28
The FY-4A Quantitative Precipitation Estimation (QPE) product is crucial for comprehensive research on precipitation patterns and spatiotemporal distribution across Central Asian (CA) countries. In this study, FY-4A QPE data quality was evaluated using the Integrated Multi-satellite Retrievals for Global Precipitation Measurement Final run (IMERG-F), and the precipitation characteristics and spatiotemporal distribution over five CA countries were subsequently examined. The main findings were as follows. (1) FY-4A QPE accurately reflected precipitation spatial disparities across the CA countries, aligning well with the temporal changes of IMERG-F. (2) Annual average precipitation (AAP) exhibited substantial spatial variation over the CA countries in relation to altitude. High-altitude regions exceeded 500 mm AAP, encompassing <10% of the area, whereas low-altitude areas experienced <350 mm AAP, accounting for >90% of the region. (3) Precipitation distribution exhibited pronounced seasonality across the five CA countries. Summer exhibited the widest precipitation range, averaging >50 mm. Conversely, the autumn average, typically <40 mm, was the lowest. Kyrgyzstan and Tajikistan experienced sufficient precipitation year-round, with some areas showing an average >480 mm. However, central and western Kazakhstan, Uzbekistan, and northern Turkmenistan received <40 mm. (4) According to clustering of areas with a monthly average precipitation exceeding 40 mm, the five CA countries were classified into four spatial distribution types: point discrete, drought, semi-dry and semi-wet, and sandwich. (5) In summer across the five CA countries, areas with elevated precipitation density displayed a near 3-hour cyclic daily variation. Notably, one of these periods occurred from noon to the first half of the night. Furthermore, the predominant precipitation type was light rain, with a minor occurrence of moderate rain.
Aijun CHEN , Yin . Spatiotemporal distribution of precipitation in five Central Asian countries based on FY-4A quantitative precipitation estimates[J]. Arid Zone Research, 2023 , 40(9) : 1369 -1381 . DOI: 10.13866/j.azr.2023.09.01
[1] | 吴玥葶, 郭利丹, 井沛然, 等. 中亚五国水-能源-粮食-生态耦合关系及时空分异[J]. 干旱区研究, 2023, 40(4): 573-582. |
[1] | [Wu Yueting, Guo Lidan, Jing Peiran, et al. Coupling relationship and spatiotemporal differentiation of the water-energy-food-ecology nexus in five Central Asian countries[J]. Arid Zone Research, 2023, 40(4): 573-582.] |
[2] | 谢志轩, 肖天贵, 叶如辉, 等. “一带一路”陆路地区自然灾害时空分布特征[J]. 成都信息工程大学学报, 2022, 37(1): 111-118. |
[2] | [Xie Zhixuan, Xiao Tiangui, Ye Ruhui, et al. Temporal and spatial distribution characteristics of natural disasters in the land area of the “Belt and Road”[J]. Journal of Chengdu University of Information Technology, 2022, 37(1): 111-118.] |
[3] | 王会军, 唐国利, 陈海山, 等. “一带一路” 区域气候变化事实、影响及可能风险[J]. 大气科学学报, 2020, 43(1): 1-9. |
[3] | [Wang Huijun, Tang Guoli, Chen Haishan, et al. The Belt and Road region climate change: Facts, impacts and possible risks[J]. Transactions of Atmospheric Sciences, 2020, 43(1): 1-9.] |
[4] | 周高洁, 赵勇, 姚俊强, 等. 气候变化背景下中亚干旱区大气水分循环要素时空演变[J]. 干旱区研究, 2022, 39(5): 1371-1384. |
[4] | [Zhou Gaojie, Zhao Yong, Yao Junqiang, et al. Spatiotemporal evolution of atmospheric water cycle factors in arid regions of Central Asia under climate change[J]. Arid Zone Research, 2022, 39(5): 1371-1384.] |
[5] | Wang J S, Chen F H, Jin L Y, et al. Characteristics of the dry/wet trend over arid Central Asia over the past 100 years[J]. Climate Research, 2010, 41(1): 51-59. |
[6] | 闫昕旸, 张强, 张文波, 等. 泛中亚干旱区气候变化特征分析[J]. 干旱区研究, 2021, 38(1): 1-11. |
[6] | [Yan Xinyang, Zhang Qiang, Zhang Wenbo, et al. Analysis of climate characteristics in the Pan-Central-Asia arid region[J]. Arid Zone Research, 2021, 38(1): 1-11.] |
[7] | 陈发虎, 黄伟, 靳立亚, 等. 全球变暖背景下中亚干旱区降水变化特征及其空间差异[J]. 中国科学:地球科学, 2011, 41(11): 1647-1657. |
[7] | [Chen Fahu, Huang Wei, Jin Liya, et al. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming[J]. Science China Earth Science, 2011, 41(11): 1647-1657.] |
[8] | 迪丽努尔·托列吾别克,李栋梁. 近115 a中亚干湿气候变化研究[J]. 干旱气象, 2018, 36(2):185-195. |
[8] | [Dilinuer Tuoliewubieke, Li Dongliang. Characteristics of the dry/wet climate change in Central Asia in recent 115 years[J]. Journal of Arid Meteorology, 2018, 36(2): 185-195. ] |
[9] | Hu Z Y, Zhou Q M, Chen X, et al. Variations and changes of annual precipitation in Central Asia over the last century[J]. International Journal of Climatology, 2017, 37(S1): 157-170. |
[10] | 李如琦, 唐冶, 阿布力米提江·阿不力克木, 等. 中亚五国暴雨分布及其环流特征[J]. 沙漠与绿洲气象, 2019, 13(1): 1-7. |
[10] | [Li Ruqi, Tang Ye, Ablimitjan Ablikim, et al. Characteristics of rainstorm and its circulation in five countries of Central Asian[J]. Desert and Oasis Meteorology, 2019, 13(1): 1-7.] |
[11] | Yang T, Li Q, Chen X, et al. Spatiotemporal variability of the precipitation concentration and diversity in Central Asia[J]. Atmospheric Research, 2020, 241(35): 104954. |
[12] | 徐利岗, 杜历, 姚海娇, 等. 中亚干旱区降水时空变化特征及趋势分析[J]. 干旱区资源与环境, 2015, 29(11): 121-127. |
[12] | [Xu Ligang, Du Li, Yao Haijiao, et al. Spatiotemporal variations and tendency of annual precipitation in the arid Central Asia[J]. Journal of Arid Land Resources and Environment, 2015, 29(11): 121-127.] |
[13] | Zhang M, Chen Y N, Shen Y J, et al. Changes of precipitation extremes in arid Central Asia[J]. Quaternary International, 2017, 436(29): 16-27. |
[14] | Zhang M, Chen Y N, Shen Y J, et al. Tracking climate change in Central Asia through temperature and precipitation extremes[J]. Journal of Geographical Sciences, 2019, 29(1): 3-28. |
[15] | Yu Y, Chen X, Disse M, et al. Climate change in Central Asia: Sino-German cooperative research findings[J]. Science Bulletin, 2020, 65(9): 689-692. |
[16] | Sorooshian S, Hsu K L, Gao X G, et al. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall[J]. Bulletin of the American Meteorological Society, 2000, 81(9): 2035-2046. |
[17] | Joyce R J, Janowiak J E, Arkin P A, et al. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution[J]. Journal of Hydrometeorology, 2004, 5(3): 487-503. |
[18] | Huffman G J, Bolvin D T, Nelkin E J, et al. The TRMM multi-satellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[J]. Journal of Hydrometeorology, 2007, 8(1): 38-55. |
[19] | Huffman G J, Bolvin D T. Algorithm Theoretical Basis Document, Version 4.1: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG)[EB/OL]. NASA/GSFC: Greenbelt, MD, USA, 2013. |
[20] | Hong Z K, Han Z Y, Li X Y, et al. Generation of an improved precipitation dataset from multisource information over the Tibetan Plateau[J]. Journal of Hydrometeorology, 2021, 22(5): 1275-1295. |
[21] | Thies B, Bendix J. Satellite based remote sensing of weather and climate: Recent achievements and future perspectives[J]. Meteorological Applications, 2011, 18(3): 262-295. |
[22] | Kidd C, Levizzani V. Status of satellite precipitation retrievals[J]. Hydrology and Earth System Sciences, 2011, 15(15): 1109-1116. |
[23] | Yuan F, Wang B, Shi C X, et al. Evaluation of hydrological utility of IMERG Final run V05 and TMPA 3B42V7 satellite precipitation products in the Yellow River source region, China[J]. Journal of Hydrology, 2018, 567(56): 696-711. |
[24] | Min M, Wu C Q, Li C, et al. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series[J]. Journal of Meteorological Research, 2017, 31(4): 708-719. |
[25] | Yang J, Zhang Z Q, Wei C Y, et al. Introducing the new generation of Chinese geostationary weather satellites, Feng Yun-4[J]. Bulletin of the American Meteorological Society, 2017, 98(8): 1637-1658. |
[26] | 游然. 卫星定量降水估计方法[C] // 合肥:第35届中国气象学会年会, 2018. |
[26] | [You Ran. Satellite quantitative precipitation estimation method[C] // Hefei:The 35th Annual Conference of the Chinese Meteorological Society, 2018.] |
[27] | 钟宇璐. 风云四号卫星定量降水估计产品的检验评估[J]. 农业灾害研究, 2021, 11(3): 96-98. |
[27] | [Zhong Yulu. Evaluation and verification of FY-4A satellite quantitative precipitation estimation product[J]. Journal of Agricultural Catastropholgy, 2021, 11(3): 96-98.] |
[28] | 陈爱军, 孔宇, 陆大春. 应用CGDPA评估中国大陆地区IMERG的降水估计精度[J]. 大气科学学报, 2018, 41(6): 797-806. |
[28] | [Chen Aijun, Kong Yu, Lu Dachun. Evaluation of the precipitation estimation accuracy of IMERG over mainland China with CGDPA[J]. Transactions of Atmospheric Sciences, 2018, 41(6): 797-806.] |
[29] | 陈爱军, 吴雪菲, 楚志刚. 精细化评估GPM/IMERG产品对台风“妮坦”降水的观测精度[J]. 气象科学, 2021, 41(5): 678-686. |
[29] | [Chen Aijun, Wu Xuefei, Chu Zhigang. Refined evaluation of the accuracy of GPM/IMERG in the precipitation process of typhoon Nida[J]. Journal of the Meteorological Sciences, 2021, 41(5): 678-686.] |
[30] | 吴雪菲, 陈爱军, 余安安, 等. 双偏振雷达评估IMERG对不同类型降水的观测精度[J]. 气象科技, 2022, 50(4): 476-484. |
[30] | [Wu Xuefei, Chen Aijun, Yu An’an, et al. Using dual-polarization radar to evaluate accuracy of GPM/IMERG in different types of precipitation process[J]. Meteorological Science and Technology, 2022, 50(4): 476-484.] |
[31] | Arshad M, Ma X Y, Yin J, et al. Evaluation of GPM-IMERG and TRMM-3B42 precipitation products over Pakistan[J]. Atmospheric Research, 2021, 249(36): 105341. |
[32] | Hosseini-Moghari S M, Tang Q H. Validation of GPM IMERG V05 and V06 precipitation products over Iran[J]. Journal of Hydrometeorology, 2020, 21(5): 1011-1037. |
[33] | Wang N, Liu W B, Sun F, et al. Evaluating satellite-based and reanalysis precipitation datasets with gauge-observed data and hydrological modeling in the Xihe River Basin, China[J]. Atmospheric Research, 2020, 234(35): 104746. |
[34] | 国家气象中心. 降水量等级(GB/T 28592-2012)[S]. 北京: 中国标准出版社, 2012. |
[34] | [National Meteorological Centre. Grade of precipitation (GB/T 28592-2012)[S]. Beijing: Standard Press of China, 2012. ] |
/
〈 | 〉 |