Effects of drought stress on growth and physiology of Alhagi sparsifolia seedlings
Received date: 2022-07-27
Revised date: 2022-10-06
Online published: 2023-03-08
Leaves and roots respond to drought stress through morphological, physiological, and biomass accumulation changes. Alhagi sparsifolia is the dominant plant in the desert-oasis transition zone of Cele. We analyzed the characteristics of growth and physiological changes in leaves and roots of 1-year-old A. sparsifolia seedlings through a pot experiment. Results revealed the adaptive strategy of A. sparsifolia to drought stress. We simulated three water conditions (CK is well-watered: 70%-75% field capacity (FC); W1 is mild stress: 50%-55% FC; W2 is severe stress: 25%-30% FC). The results show the following: (1) Drought significantly inhibited the growth of the aboveground and underground tissues of A. sparsifolia. The main manifestations are: leaf area, root length, root surface area, root tissue density, and soluble sugar content of leaves and roots decreased significantly under stress (P < 0.05). The leaf tissue density, leaf dry matter content, specific root length, proline and malondialdehyde contents of leaf and root increased. (2) In the early growth stage, the aboveground biomass of A. sparsifolia under all treatments was relatively high (root-shoot ratios under CK, W1, and W2 were 0.43 ± 0.14, 0.59 ± 0.1, and 0.83 ± 0.83), while in the late growth stage, the below-ground biomass under all treatments was relatively high. The root-shoot ratio was the highest under severe stress (3.12 ± 0.32). The results indicate that A. sparsifolia enhanced the investment of resources underground in the late growth stage, and the resource allocation characteristic is more obvious under severe drought stress. (3) Pearson-correlation analysis showed that there was a significant tradeoff between core traits related to leaf morphology and root physiology in A. sparsifolia (P < 0.05). Meanwhile, the leaf and root had synergistic changes in physiological metabolism. The results preliminary indicate the adaptive characteristics and A. sparsifolia seedlings under drought exhibit high dry matter storage, defense capacity, and low water consumption. A. sparsifolia can coordinate the resource allocation relationship between leaves and roots. At the same time, with drought stress time increased, the adaptive strategy of slow investment and conservative growth of A. sparsifolia was gradually formed. The results provide a reference for the restoration and management of desert vegetation in this region.
Mengqi XU , Yanju GAO , Zhihao ZHANG , Caibian HUANG , Fanjiang ZENG . Effects of drought stress on growth and physiology of Alhagi sparsifolia seedlings[J]. Arid Zone Research, 2023 , 40(2) : 257 -267 . DOI: 10.13866/j.azr.2023.02.10
[1] | Liu L B, Gudmundsson L, Hauser M, et al. Soil moisture dominates dryness stress on ecosystem production globally[J]. Nature Communications, 2020, 11(1): 4892. |
[2] | 孙百生, 钱金平, 赵欢蕊. 西北典型荒漠植物红砂生物量及根系形态特征对降水格局的响应[J]. 生态环境学报, 2018, 27(11): 1993-1999. |
[2] | [Sun Baisheng, Qian Jinping, Zhao Huanrui. Response of biomass and root morphology of desert plants Corispermum candelabrum to precipitation change in northwest China[J]. Ecology and Environmental Sciences, 2018, 27(11): 1993-1999.] |
[3] | 刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45(4): 325-339. |
[3] | [Liu Xiaojuan, Ma Keping. Plant functional traits-concepts, applications and future directions[J]. Scientia Sinica Vitae, 2015, 45(4): 325-339.] |
[4] | 施宇, 温仲明, 龚时慧. 黄土丘陵区植物叶片与细根功能性状关系及其变化[J]. 生态学报, 2011, 31(22): 6805-6814. |
[4] | [Shi Yu, Wen Zhongming, Gong Shihui. Comparisons of relationships between leaf and fine root traits in hilly area of the Loess Plateau, Yanhe River basin, Shaanxi Province, China[J]. Acta Ecologica Sinica, 2011, 31(22): 6805-6814.] |
[5] | Eviner V T, Chapin III F S. Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes[J]. Annual Review of Ecology Evolution and Systematics, 2003, 13(34): 455-485. |
[6] | 郑旭, 杨志鑫, 郝东梅, 等. 盐碱地食叶草细根对干旱复水后的响应[J]. 干旱区研究, 2022, 39(1): 240-249. |
[6] | [Zheng Xu, Yang Zhixin, Hao Dongmei, et al. Response of Rumex hanus by. roots to drought after rehydration[J]. Arid Zone Research, 2022, 39(1): 240-249.] |
[7] | 魏圆慧, 梁文召, 韩路, 等. 胡杨叶功能性状特征及其对地下水埋深的响应[J]. 生态学报, 2021, 41(13): 5368-5376. |
[7] | [Wei Yuanhui, Liang Wenzhao, Han Lu, et al. Leaf functional traits of Populus euphratica and its response to groundwater depths in Tarim extremely arid area[J]. Acta Ecologica Sinica, 2021, 41(13): 5368-5376.] |
[8] | 张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响[J]. 中国农业科学, 2018, 51(5): 868-882. |
[8] | [Zhang Cuimei, Shi Shangli, Wu Fang. Effects of drought stress on root and physiological responses of different drought-tolerant alfalfa varieties[J]. Scientia Agricultura Sinica, 2018, 51(5): 868-882.] |
[9] | 尚佳州, 赵瑜琦, 王卫锋, 等. 干旱对碧玉杨幼苗水氮利用与同化物分配的影响[J]. 干旱区研究, 2022, 39(3): 893-899. |
[9] | [Shang Jiazhou, Zhao Yuqi, Wang Weifeng, et al. Response of drought on water and nitrogen utilization and carbohydrate distribution of Populus × euramericana‘Biyu’cuttings[J]. Arid Zone Research, 2022, 39(3): 893-899.] |
[10] | Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985): 821-827. |
[11] | 汤东, 程平, 杨建军, 等. 天山北坡山前植物对干旱胁迫的生理响应[J]. 干旱区研究, 2021, 38(6): 1683-1694. |
[11] | [Tang Dong, Cheng Ping, Yang Jianjun, et al. Physiological responses of plants to drought stress in the Northern Piedmont, Tianshan Mountains[J]. Arid Zone Research, 2021, 38(6): 1683-1694.] |
[12] | Liu G F, Freschet G T, Pan X, et al. Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems[J]. New Phytologist, 2010, 188(2): 543-553. |
[13] | Craine J M, Lee W G, Bond W J, et al. Environmental constraints on a global relationship among leaf and root traits of grasses[J]. Ecology, 2005, 86(1): 12-19. |
[14] | Lozano Y M, Aguilar T C A, Flaig I C, et al. Root trait responses to drought are more heterogeneous than leaf trait responses[J]. Functional Ecology, 2020, 34(11): 2224-2235. |
[15] | Reich P B, Tjoelker M G, Walters M B, V et al. Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light[J]. Functional Ecology, 1998, 12(3): 327-338. |
[16] | Eissenstat D M, Wells C E, Yanai R D, et al. Building roots in a changing environment: implications for root longevity[J]. New Phytologist, 2000, 147(1): 33-42. |
[17] | 荆瑞雪, 张波, 郭平林, 等. 不同生境下骆驼刺与花花柴生态化学计量学特征的比较[J]. 生态学杂志, 2020, 39(3): 733-740. |
[17] | [Jing Ruixue, Zhang Bo, Guo Pinglin, et al. The ecological stoichiometric characteristics of Alhagi sparsifolia and Karelinia caspia in different habitats[J]. Chinese Journal of Ecology, 2020, 39(3): 733-740.] |
[18] | 曾凡江, 张希明, 李小明. 骆驼刺植被及其资源保护与开发的意义[J]. 干旱区地理, 2002, 25(3): 286-288. |
[18] | [Zeng Fanjiang, Zhang Ximing, Li Xiaoming. Study on the characteristics of Alhagi and its impact on resource protection and development[J]. Aird Land Geography, 2002, 25(3): 286-288.] |
[19] | 罗维成, 曾凡江, 刘波, 等. 疏叶骆驼刺根系对土壤异质性和种间竞争的响应[J]. 植物生态学报, 2012, 36(10): 1015-1023. |
[19] | [Luo Weicheng, Zeng Fanjiang, Liu Bo, et al. Response of root systems to soil heterogeneity and interspecific competition in Alhagi sparsifolia[J]. Chinese Journal of Plant Ecology 2012, 36(10): 1015-1023.] |
[20] | 李向义, 张希明, 何兴元, 等. 沙漠-绿洲过渡带四种多年生植物水分关系特征[J]. 生态学报, 2004, 24(6): 1164-1171. |
[20] | [Li Xiangyi, Zhang Ximing, He Xingyuan, et al. Water relation characteristics of four perennial plant species growing in the transition zone between oasis and open desert[J]. Acta Ecologica Sinica, 2004, 24(6): 1164-1171.] |
[21] | 黄彩变, 曾凡江, 雷加强. 骆驼刺幼苗生长和功能性状对不同水氮添加的响应[J]. 草业学报, 2016, 25(12): 150-160. |
[21] | [Huang Caibian, Zeng Fanjiang, Lei Jiaqiang. Growth and functional trait responses of Alhagi sparsifolia seedlings to water and nitrogen addition[J]. Acta Prataculturae Sinica, 2016, 25(12): 150-160.] |
[22] | 曾凡江, 郭海峰, 刘波, 等. 疏叶骆驼刺幼苗根系生态学特性对水分处理的响应[J]. 干旱区研究, 2009, 26(6): 852-858. |
[22] | [Zeng Fanjiang, Guo Haifeng, Liu Bo, et al. Response of ecological properties of roots of Alhagi sparsifolia Shap. seedlings to different irrigation treatments[J]. Arid Zone Research, 2009, 26(6): 852-858.] |
[23] | 张晓蕾, 曾凡江, 刘波, 等. 不同土壤水分处理对疏叶骆驼刺幼苗光合特性及干物质积累的影响[J]. 干旱区研究, 2010, 27(4): 649-655. |
[23] | [Zhang Xiaolei, Zeng Fanjiang, Liu Bo, et al. Effects of different soil moisture treatments on the photosynthesis and dry matter accumulation of Alhagi sparsifolia seedlings[J]. Arid Zone Research, 2010, 27(4): 649-655.] |
[24] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 194-260. |
[24] | [Li Hesheng. Plant Physiology and Biochemistry Experimental Principles and Techniques[M]. Beijing: Higher Education Press, 2000: 194-260.] |
[25] | 雷蕾, 刘贤德, 王顺利, 等. 祁连山高山灌丛生物量分配规律及其与环境因子的关系[J]. 生态环境学报, 2011, 20(11): 1602-1607. |
[25] | [Lei Lei, Liu Xiande, Wang Shunli, et al. Assignment rule of alpine shrubs biomass and its relationships to environmental factors in Qilian Mountains[J]. Ecology and Environmental Sciences, 2011, 20(11): 1602-1607.] |
[26] | 何维明. 水分因素对沙地柏实生苗水分和生长特征的影响[J]. 植物生态学报, 2001, 25(1): 11-16. |
[26] | [He Weiming. Effects of water factor on hydraulic and growth characteristics of Sabina vulgaris seedlings[J]. Chinese Journal of Plant Ecology, 2001, 25(1): 11-16.] |
[27] | 张媛媛, 孟欢欢, 周晓兵, 等. 不同生境/萌发类型尖喙牻牛儿苗生物量分配特征[J]. 干旱区研究, 2022, 39(2): 541-550. |
[27] | [Zhang Yuanyuan, Meng Huanhuan, Zhou Xiaobing, et al. Biomass allocation patterns of an ephemeral species (Erodium oxyrhinchum) in different habitats and germination types in the Gurbantunggut Desert, China[J]. Arid Zone Research, 2022, 39(2): 541-550.] |
[28] | Maltchik L, Rolon A S, Schott P. Effects of hydrological variation on the aquatic plant community in a floodplain palustrine wetland of southern Brazil[J]. Limnology, 2007, 8(1): 23-28. |
[29] | Xia J B, Zhang S Y, Li T, et al. Effect of continuous cropping generations on each component biomass of poplar seedlings during different growth periods[J]. The Scientific World Journal, 2014(2): 618421. |
[30] | 吴敏, 张文辉, 周建云, 等. 干旱胁迫对栓皮栎幼苗细根的生长与生理生化指标的影响[J]. 生态学报, 2014, 34(15): 4223-4233. |
[30] | [Wu Ming, Zhang Wenhui, Zhou Jianyun, et al. Effects of drought stress on growth, physiological and biochemical parameters in fine roots of Quercus variabilis Bl. seedlings[J]. Acta Ecologica Sinica, 2014, 34(15): 4223-4233.] |
[31] | 朱铁霞, 高阳, 高凯, 等. 干旱胁迫下菊芋各器官生物量及物质分配规律[J]. 生态学报, 2019, 39(21): 8021-8026. |
[31] | [Zhu Tiexia, Gao Yang, Gao Kai, et al. Organ biomass and resource allocation in response to drought stress in Jerusalem artichoke[J]. Acta Ecologica Sinica, 2019, 39(21): 8021-8026.] |
[32] | 陈明涛, 赵忠. 干旱对4种苗木根系特征及各部分物质分配的影响[J]. 北京林业大学学报, 2011, 33(1): 16-22. |
[32] | [Chen Mingtao, Zhao Zhong. Effects of drought on root characteristics and mass allocation in each part of seedlings of four tree species[J]. Journal of Beijing Forestry University, 2011, 33(1): 16-22.] |
[33] | 李善家, 苏培玺, 张海娜, 等. 荒漠植物叶片水分和功能性状特征及其相互关系[J]. 植物生理学报, 2013, 49(2): 153-160. |
[33] | [Li Shanjia, Su Peixi, Zhang Haina, et al. Characteristics and relationships of foliar water and leaf functional traits of desert plants[J]. Plant Physiology Journal 2013, 49(2): 153-160.] |
[34] | Wilson K B, Baldocchi D D, Hanson P J. Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest[J]. Tree Physiology, 2000, 20(9): 565-578. |
[35] | Eissenstat D M, Caldwell M. Competitive ability is linked to rates of water extraction[J]. Oecologia, 1988, 75(1): 1-7. |
[36] | 高丽, 杨劼, 刘瑞香. 不同土壤水分条件下中国沙棘雌雄株叶片形态结构及生理生化特征[J]. 应用生态学报, 2010, 21(9): 2201-2208. |
[36] | [Gao Li, Yang Jie, Liu Ruixiang. Leaf morphological structure and physiological and biochemical characteristics of female and male Hippophae rhamnoides subsp, sinensis under different soil moisture condition[J]. Chinese Journal of Applied Ecology, 2010, 21(9): 2201-2208.] |
[37] | 朱军涛, 李向义, 张希明, 等. 灌溉对疏叶骆驼刺(Alhagi sparsifolia)幼苗光合生理指标及渗透物质的影响[J]. 中国沙漠, 2009, 29(4): 697-702. |
[37] | [Zhu Juntao, Li Xiangyi, Zhang Ximing, et al. Effect of irrigation on photosynthetic physiology characteristics and osmolytes of Alhagi sparsifolia[J]. Journal of Desert Research, 2009, 29(4): 697-702.] |
[38] | 李嘉珞, 郭米山, 高广磊, 等. 沙地樟子松菌根化幼苗对干旱胁迫的生理响应[J]. 干旱区研究, 2021, 38(6): 1704-1712. |
[38] | [Li Jialuo, Guo Mishan, Gao Guanglei, et al. Physiological responses of mycorrhizal seedlings of Pinus sylvestris var. mongolica to drought stress[J]. Arid Zone Research, 2021, 38(6): 1704-1712.] |
[39] | Eissenstat D, Yanai R. The ecology of root lifespan[J]. Advances in Ecological Research, 1997, 27: 1-60. |
[40] | Silva E N, Ferreira-Silva S L, Viégas R A, et al. The role of organic and inorganic solutes in the osmotic adjustment of drought-stressed Jatropha curcas plants[J]. Environmental and Experimental Botany, 2010, 69(3): 279-285. |
[41] | 罗婷, 裴艳辉. 乳油木幼苗对不同水分胁迫强度的生理响应[J]. 西部林业科学, 2020, 49(6): 21-27. |
[41] | [Luo Ting, Pei Yanhui. Physiological response of Vitellaria paradora seedlings to different water stress intensity[J]. Journal of West China Forestry Science, 2020, 49(6): 21-27.] |
[42] | 张美云, 钱吉, 郑师章. 渗透胁迫下野生大豆游离脯氨酸和可溶性糖的变化[J]. 复旦学报(自然科学版), 2001, 40(5): 558-561. |
[42] | [Zhang Meiyun, Qian Ji, Zheng Shizhang. Studies on free proline and soluble sugar of wild soybeans (Glycine soja) under osmotic stress[J]. Journal of Fudan University, 2001, 40(5): 558-561.] |
[43] | 马洋, 王雪芹, 韩章勇, 等. 风蚀沙埋对疏叶骆驼刺(Alhagi sparsifolia)和花花柴(Karelinia caspica)幼苗的生理影响[J]. 中国沙漠, 2015, 35(5): 1254-1261. |
[43] | [Ma Yang, Wang Xueqin, Han Zhangyong, et al. Effect of wind erosion and sand burial on physiological characters in Alhagi sparsifolia and Karelinia caspica seedlings in the southern margin of the Taklimakan Desert[J]. Journal of Desert Research, 2015, 35(5): 1254-1261.] |
[44] | Hodges D M, Delong J M, Fomey C F, et al. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds[J]. Planta, 1999, 207(4): 604-611. |
[45] | 刘金环, 曾德慧, Lee D K. 科尔沁沙地东南部地区主要植物叶片性状及其相互关系[J]. 生态学杂志, 2006, 25(8): 921-925. |
[45] | [Liu Jinhuan, Zeng Dehui, Lee D K. Leaf traits and their interrelationships of main plant species in southeast Horqin sandy land[J]. Chinese Journal of Ecology, 2006, 25(8): 921-925.] |
[46] | Wilson P J, Thompson K, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytologist, 1999, 143(1): 155-162. |
[47] | 赵广帅, 刘珉, 石培礼, 等. 羌塘高原降水梯度植物叶片、根系性状变异和生态适应对策[J]. 生态学报, 2020, 40(1): 295-309. |
[47] | [Zhao Guangshuai, Liu Min, Shi Peili, et al. Variation of leaf and root traits and ecological adaptive strategies along a precipitation gradient on Changtang Plateau[J]. Acta Ecologica Sinica, 2020, 40(1): 295-309.] |
[48] | 丁红, 张智猛, 戴良香, 等. 不同抗旱性花生品种的根系形态发育及其对干旱胁迫的响应[J]. 生态学报, 2013, 33(17): 5169-5176. |
[48] | [Ding Hong, Zhang Zhimeng, Dai Liangxiang, et al. Responses of root morphology of peanut varieties differing in drought tolerance to waterdeficient stress[J]. Acta Ecologica Sinica, 2013, 33(17): 5169-5176.] |
[49] | Chen C W, Yang Y W, Lur H S, et al. A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development[J]. Plant and Cell Physiology, 2006, 47(1): 1-13. |
/
〈 | 〉 |