Ecology and Environment

Characteristics and drivers of the spatial-temporal change of net primary productivity in the capital area of Kazakhstan from 1994 to 2018

Expand
  • 1. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. National Desert Technology Research Center for Desert-Oasis Ecological Construction, Urumqi 830011, Xinjiang, China
    4. Saken Seifullin Kazakh Agrotechnical University, Astana 010000, Kazakhstan

Received date: 2022-03-27

  Revised date: 2022-09-14

  Online published: 2023-01-17

Abstract

Clarifying the impacts of climate change and human activity on plant’s net primary productivity (NPP) is crucial for regional ecosystem transformation and sustainable development. Using a simulated scenario experimental design based on the CASA model, five periods of Landsat remote sensing images, and meteorological data spanning the years 1994 to 2018, this paper determines the effects of two factors, human activities and climate change, on plant’s NPP in the capital area. The results indicate that: (1) During 1994-2018, the multi-year average of NPP in the studied area was 226.21 g C·m-2·a-1, with a fluctuating rising trend; (2) The execution of the Green Ring Project led to a large positive gain in NPP owing to an increased plantation area (0.38 Tg C·a-1, P < 0.01).In contrast, the impact of climate change on NPP is more variable, with an overall loss effect (-0.07 Tg C·a-1, P = 0.34). Under the combined influence of human activity (land use change) and climate change, the NPP of Kazakhstan’s capital area exhibited a considerable positive gain effect (0.27 Tg C·a-1, P < 0.1); climate change has a lesser impact on plants’ net primary productivity than human activities. (3) Temperature, solar radiation, and precipitation are the most influential climatic elements on NPP. During 1994-2000 and 2006-2012, increased temperature and reduced precipitation caused NPP loss, which dropped from 218.50 g C·m-2·a-1, 201.19 g C·m-2·a-1 to 189.00 g C·m-2·a-1, 188.48 g C·m-2·a-1; With the improvement of precipitation circumstances over 2000-2006 and 2012-2018, the mean value of NPP in this area increased significantly, reaching 201.19 g C·m-2·a-1, 207.73 g C·m-2·a-1 correspondingly. These research findings assist in elucidating the processes of climate change and human activities on NPP and may also serve as a guide to enhance the ecological quality of the desert-steppe area, alleviate the global warming issues, and serve the carbon neutrality goal of Kazakhstan by 2060.

Cite this article

CHEN Yusen,Akida ASKARL,WANG Yongdong,Talgat ABZHANOV,Dani SARSEKOVA,Zhazira ZHUMABEKOVA . Characteristics and drivers of the spatial-temporal change of net primary productivity in the capital area of Kazakhstan from 1994 to 2018[J]. Arid Zone Research, 2022 , 39(6) : 1917 -1929 . DOI: 10.13866/j.azr.2022.06.22

References

[1] 石志华, 刘梦云, 吴健利, 等. 基于CASA模型的陕西省植被净初级生产力时空分析[J]. 水土保持通报, 2016, 36(1): 206-211, 345.
[1] [ Shi Zhihua, Liu Mengyun, Wu Jianli, et al. Spatial-temporal analysis of vegetation net productivity in Shanxi Province based on CASA model[J]. Bulletin of Soil and Water Conservation, 2016, 36(1): 206-211, 345. ]
[2] 栗忠飞, 王小莲, 徐钰涛, 等. 1996—2015年间滇西北香格里拉植被NPP变化分析[J]. 生态学报, 2022, 42(1): 266-276.
[2] [ Li Zhongfei, Wang Xiaolian, Xu Yutao, et al. Changes of net productivity of vegetation from 1996 to 2015 in Shangrila region, China[J]. Acta Ecological Sinica, 2022, 42(1): 266-276. ]
[3] Bao G, Bao Y H, Qin Z H, et al. Modeling net primary productivity of terrestrial ecosystems in the semi-arid climate of the Mongolian Plateau using LSWI-based CASA ecosystem model[J]. International Journal of Applied Earth Observations and Geoinformation, 2015, 46: 84-93.
[4] Dennis D, Baldocchi, Xu L K, et al. How plant functional-type, weather, seasonal drought, and soil physical properties alter Water and energy fluxes of an Oak-Grass savanna and an annual grassland[J]. Agricultural and Forest Meteorology, 2003, 123(1-2): 13-39.
[5] Haeda N, Cangara A R, Culla A S, et al. Indonesia-norway cooperation in reducing emission from deforestation and degradation framework: A case study of central kalimantan forest[J]. IOP Conference Series: Earth and Environmental Science, 2020, 575: 12155.
[6] Fang P, Yan N N, Wei P P, et al. Aboveground biomass mapping of crops supported by improved CASA model and sentinel-2 multispectral imagery[J]. Remote Sensing, 2021, 13(14): 2755.
[7] 张美玲, 陈全功, 蒋文兰. 不同草地类型净初级生产力(NPP)模拟及其敏感性分析[J]. 干旱区地理, 2021, 44(2): 369-378.
[7] [ Zhang Meiling, Chen Quangong, Jiang Wenlan. Simulation and sensitivity analysis of net primary productivity (NPP) of different grassland types[J]. Arid Land Geography, 2021, 44(2): 369-378. ]
[8] 孙从建, 乔鹏, 王佳瑞, 等. 2000年以来吕梁连片贫困区植被净初级生产力(NPP)时空变化特征分析[J]. 生态学报, 2022, 42(1): 277-286.
[8] [ Sun Congjian, Qiao Peng, Wang Jiarui, et al. Spatio-temporal variation characteristics of net primary productivity in Lvliang contiguous poverty areas science 2000[J]. Acta Ecologica Sinic, 2022, 42(1): 277-286. ]
[9] Christopher B Field, James T Randerson, Carolyn M Malmstr?m. Global net primary production: Combining ecology and remote sensing[J]. Remote Sensing of Environment, 1995, 51(1): 74-88.
[10] 朱文泉, 陈云浩, 徐丹, 等. 陆地植被净初级生产力计算模型研究进展[J]. 生态学杂志, 2005, 24(3): 296-300.
[10] [ Zhu Wenquan, Chen Yunhao, Xu Dan, et al. Advances in terrestrial net primary productivity (NPP) estimation models[J]. Chinese Journal of Ecology, 2005, 24(3): 296-300. ]
[11] 张雪蕾, 肖伟华, 王义成. 基于改进的CASA模型三峡库区NPP时空特征及气候驱动机制[J]. 生态学报, 2021, 41(9): 3488-3498.
[11] [ Zhang Xuelei, Xiao Weihua, Wang Yicheng. Temporal-spatial variations of NPP and its climate driving mechanism in the three Gorges Reservoir area based on modified CASA model[J]. Acta Ecologica Sinica, 2021, 41(9): 3488-3498. ]
[12] 刘洁, 孟宝平, 葛静. 基于CASA模型和MODIS数据的甘南草地NPP时空动态变化研究[J]. 草业学报, 2019, 28(6): 19-32.
[12] [ Liu Jie, Meng Baoping, Ge Jing. Spatio-temporal dynamic change of grassland NPP in Gannan prefecture, as determined by the CASA model[J]. Acta Prataculturae Sinica, 2019, 28(6): 19-32. ]
[13] 朱文泉, 潘耀忠, 龙中华. 基于GIS和RS的区域陆地植被NPP估算——以中国内蒙古为例[J]. 遥感学报, 2005, 9(3): 300-307.
[13] [ Zhu Wenquan, Pan Yaozhong, Long Zhonghua. Estimating net primary productivity of terrestrial vegetation based on GIS and RS: A case study in Inner Mongolia, China[J]. National Remote Sensing Bulletin, 2005, 9(3): 300-307. ]
[14] 张鑫彤, 吴秀芹. 基于CASA模型的2005—2019年云南断陷盆地NPP时空变化研究[J]. 地球学报, 2021, 42(3): 426-434.
[14] [ Zhang Xintong, Wu Xiuqin. Research on the spatial-temporal variation of NPP in Yunnan fault-depression basins based on CASA model in 2005-2019[J]. Acta Geoscientica Sinica, 2021, 42(3): 426-434. ]
[15] 侯丽丽, 银山, 都瓦拉, 等. 基于CASA模型的浑善达克沙地植被NPP模拟及时空分析[J]. 水土保持研究, 2020, 27(2): 165-171.
[15] [ Hou Lili, Yin Shan, Du Wala, et al. Simulation and spatial-temporal analysis of vegetation in Hunshandak Sandy Land based on CASA model[J]. Research of Soil and Water Conservation, 2020, 27(2): 165-171. ]
[16] 董丹, 倪健. 利用CASA模型模拟西南喀斯特植被净第一性生产力[J]. 生态学报, 2011, 31(7): 1855-1866.
[16] [ Dong Dan, Ni Jian. Using modeling changes of net primary productivity of karst vegetation in Southwest China using the CASA model[J]. Acta Ecological Sinica, 2011, 31(7): 1855-1866. ]
[17] 耿笛, 梁亮, 黄婷, 等. 利用改进的CASA模型估算城市尺度NPP——以徐州城区为例[J]. 测绘通报, 2021(1): 78-83, 89.
[17] [ Geng Di, Huang Ting, et al. Estimation of urban scale NPP by using improved CASA model: Taking Xuzhou City as an example[J]. Bulletin of Surveying and Mapping, 2021(1): 78-83, 89. ]
[18] 王旭阳, 张显峰, 赵杰鹏. CASA模型及其在新疆准格尔地区的实现[C]// Dcdf数字中国发展高层论坛暨信息主管峰会. 北京: 北京大学, 国际数学地球学会, 2010.
[18] [ Wang Xuyang, Zhang Xianfeng, Zhao Jiepeng. CASA model and its implementation in Jungar Region, Xinjiang[C]// Dcdf Digital China Development High Level Forum and Information Executives Summit. Beijing: Peking University, International Mathematical Earth Society, 2010. ]
[19] 赵守栋, 王京凡, 何新, 等. 城市化对气候变化的影响及其反馈机制研究[J]. 北京师范大学学报(自然科学版), 2014, 50(1): 66-72.
[19] [ Zhao Shoudong, Wang Jingfan, He Xin, et al. Effect of urbanization on climate change and related retroaction mechanisms[J]. Journal of Beijing Normal University (Naturnal Science Edition), 2014, 50(1): 66-72. ]
[20] 刘兴中, 何英. 可持续发展视角下第十二师水资源利用研究[J]. 农村经济与科技, 2020, 31(18): 18-20, 23.
[20] [ Liu Xingzhong, He Ying. Study on water resources utilization of the 12th division from the perspective of sustainable development[J]. Rural Economy and Science-Technology, 2020, 31(18): 18-20, 23. ]
[21] 李传华, 曹红娟, 范也平, 等. 基于校正的CASA模型NPP遥感估算及分析——以河西走廊为例[J]. 生态学报, 2019, 39(5): 1616-1626.
[21] [ Li Chuanhua, Cao Hongjuan, Fan Yeping, et al. Remote sensing estimation and analysis of NPP based on corrected CASA model: A case study of Hexi Corridor[J]. Acta Ecologica Sinica, 2019, 39(5): 1616-1626. ]
[22] 张仁平, 郭靖, 张云玲. 新疆草地净初级生产力(NPP)空间分布格局及其对气候变化的响应[J]. 生态学报, 2020, 40(15): 5318-5326.
[22] [ Zhang Renping, Guo Jing, Zhang Yunling. Spatial distribution pattern of grassland net primary productivity (NPP) and its response to climate change in Xinjiang[J]. Acta Ecologica Sinica, 2020, 40(15): 5318-5326. ]
[23] 沃笑, 吴良才, 张继平, 等. 基于CASA模型的三江源地区植被净初级生产力遥感估算研究[J]. 干旱区资源与环境, 2014, 28(9): 45-50.
[23] [ Wo Xiao, Wu Liangcai, Zhang Jiping, et al. Estimation of net primary productivity of vegetation in Three-River headwater refion using CASA model[J]. Journal of Arid Land Resources and Environment, 2014, 28(9): 45-50. ]
[24] 朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, 31(3): 413-424.
[24] [ Zhu Wenquan, Pan Yaozhong, Zhang Jinshui. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing[J]. Chinese Journal of Plant Ecology, 2007, 31(3): 413-424. ]
[25] 周伟, 牟凤云, 刚成诚, 等. 1982—2010年中国草地净初级生产力时空动态及其与气候因子的关系[J]. 生态学报, 2017, 37(13): 4335-4345.
[25] [ Zhou Wei, Mou Fengyun, Gang Chengcheng, et al. Spatial-temporal dynamics of grassland net primary productivity and their relationship with climatic factors from 1982 to 2010 in China[J]. Acta Ecologica Sinica, 2017, 37(13): 4335-4345. ]
[26] 裘骏一. 基于CASA模型的中卫沙坡头自然保护区NPP时空变化研究[D]. 兰州: 兰州大学, 2016.
[26] [ Qiu Junyi. The Temporal-Spatial Variation of NPP in Zhongwei-Shapotou Nature Reserve Based on CASA Model[D]. Lanzhou: Lanzhou University, 2016. ]
[27] Zhang Y L, Song C H, Zhang K R, et al. Effects of land use/land cover and climate changes on terrestrial net primary productivity in the Yangtze River basin, China, from 2001 to 2010[J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(6): 1092-1109.
[28] 艾柯代·艾斯凯尔. 哈萨克斯坦首都圈绿环工程主要生态服务功能评估[D]. 乌鲁木齐: 中国科学院新疆生态与地理研究所, 2021.
[28] [ Akida Askar. Evaluation of Key Ecological Services of Green Belt Project in Kazakhstan Capital Circle[D]. Urumqi: Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences, 2021. ]
[29] Chen Y Z, Ju W M, Groisman P Y, et al. Quantitative assessment of carbon sequestration reduction induced by disturbances in temperate eurasian steppe[J]. Environmental Research Letters, 2017, 12(11): 115005.
[30] Gourdji S M, Sibley A M, Lobell D B. Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections[J]. Environmental Research Letters, 2013, 8(2): 024041.
[31] Kraemer R, Prishchepov A V, Müller D, et al. Long-term agricultural land-cover change and potential for cropland expansion in the former virgin lands area of Kazakhstan[J]. Econstor Open Access Articles, 2015, 10(5): 054012.
[32] Han Q F, Luo G P, Li C F, et al. Simulated grazing effects on carbon emission in Central Asia[J]. Agricultural and Forest Meteorology, 2016, 216: 203-214
[33] Lioubimtseva E. Climate change in arid environments: revisiting the past to understand the future[J]. Progress in Physical Geography, 2004, 28(4): 502-530.
[34] 张云新, 郝海超, 范连连, 等. 中亚草原NPP时空动态及驱动因素研究[J]. 干旱区研究, 2022, 39(3): 698-707.
[34] [ Zhang Yunxin, Hao Haichao, Fan Lianlian, et al. Study on spatio-temporal dynamics and driving factors of NPP in Central Asian grassland[J]. Arid Zone Research, 2022, 39(3): 698-707. ]
[35] 黄珏. 中国陆地植被 NPP 对气候变化响应及其敏感性分析[D]. 南京: 南京信息工程大学, 2011.
[35] [ Huang Yu. Response of Vegetation Net Primary Productivity (NPP) to Climate Change in China and Sensitivity Experiments[D]. Nanjing: Nanjing University of Information Science & Technology, 2011. ]
[36] 韩其飞, 陆研, 李超凡. 气候变化对中亚草地生态系统碳循环的影响研究[J]. 干旱区地理, 2018, 41(6): 1351-1357.
[36] [ Han Qifei, Lu Yan, Li Chaofan. Impact of climate change on grassland carbon cycling in Central Asia[J]. Arid Land Geography 2018, 41(6): 1351-1357. ]
[37] 左丽媛, 高江波. 基于地理探测器的喀斯特植被NPP定量归因[J]. 生态环境学报, 2020, 29(4): 686-694.
[37] [ Zuo Liyuan, Gao Jiangbo. Quantitative attribution analysis of NPP in Karst Peak Cluster depression based on geographical detector[J]. Ecology and Environmental Sciences, 2020, 29(4): 686-694. ]
[38] 杨丹, 王晓峰. 黄土高原气候和人类活动对植被NPP变化的影响[J]. 干旱区研究, 2022, 39(2): 584-593.
[38] [ Yang Dan, Wang Xiaofeng. Contribution of climatic change and human activities to changes in net primary productivity in the Loess Plateau[J]. Arid Zone Research, 2022, 39(2): 584-593. ]
[39] 王莺, 夏文韬, 梁天刚, 等. 基于MODIS植被指数的甘南草地净初级生产力时空变化研究[J]. 草业学报, 2010, 19(1): 201-210.
[39] [ Wang Ying, Xia Wentao, Liang Tiangang. Spatial and temporal dynamic changes of net Primary product based on MODIS vegetation index in Gannan grassland[J]. Acta Prataculturae Sinica, 2010, 19(1): 201-210. ]
[40] 刘婵, 刘冰, 赵文智, 等. 中亚地区植被净初级生产力时空动态及其与气候因子关系[J]. 遥感技术与应用, 2020, 35(4): 924-933.
[40] [ Liu Chan, Liu Bing, Zhao Wenzhi, et al. Temporal-spatial variation of net primary productivity of vegetation and its relationship with climatic in Central Asia[J]. Remote Sensing Technology and Application, 2020, 35(4): 924-933. ]
Outlines

/