Comparison of downscaling methods for TRMM 3B43 precipitation data in the Qinghai Lake Basin and its surrounding areas
Received date: 2022-04-16
Revised date: 2022-09-07
Online published: 2023-01-17
Using multiple linear regression (MLR), principal component stepwise regression (PCSR), and Kriging, the TRMM 3B43 precipitation data in the Qinghai Lake Basin and surrounding areas with a resolution of 0.25° were downscaled to a resolution of 0.01°. The measured precipitation data of 20 meteorological stations in the study area were selected, and the correlation coefficient, root mean square error, and relative deviation (Bias) were used to evaluate the downscaling results. Downscaling methods for the study area. The results show a consistent spatial distribution of precipitation in the study area based on TRMM and the three downscaling methods. The annual average precipitation and the three seasons of spring, summer, and autumn are all high in the north, low in the west and northwest, and winter precipitation. The performance was high in the south and northwest and low in the middle. With increased altitude, the precipitation in the study area showed an overall trend of first increasing and then decreasing with 3800 meters as the boundary. The results of the accuracy evaluation show that the Kriging accuracy on the annual scale has the best performance. On the spatial scale, the TRMM and the three downscale data have the best accuracy in the eastern region. On the quarterly scale, the data precision is PCSR > Kriging > TRMM > MLR. On the monthly scale, the PCSR data accuracy is the best. The effect of altitude on the TRMM and the three downscaling data in the study area is small. However, with increasing altitude, the remote sensing data gradually underestimates the precipitation phenomenon, which may be due to the underestimation of precipitation and convection during microwave precipitation rate inversion underestimation of precipitation. From the comprehensive precipitation spatial distribution consistency analysis and precision evaluation, it is considered that PCSR is the most suitable downscaling method for TRMM 3B43 precipitation data in the Qinghai Lake Basin and surrounding areas.
LI Yankun,GAO Liming,ZHANG Lele,WU Xueqing,LIU Xuanchen,QI Wen . Comparison of downscaling methods for TRMM 3B43 precipitation data in the Qinghai Lake Basin and its surrounding areas[J]. Arid Zone Research, 2022 , 39(6) : 1706 -1716 . DOI: 10.13866/j.azr.2022.06.02
[1] | 沈思民, 赵军, 刘佳茹, 等. 祁连山TRMM降水数据降尺度不同方法比较研究[J]. 山地学报, 2019, 37(6): 923-931. |
[1] | [ Shen Simin, Zhao Jun, Liu Jiaru, et al. Comparative study on different downscaling methods of TRMM satellite precipitation data over the Qilian Mountains, China[J]. Mountain Research, 2019, 37(6): 923-931. ] |
[2] | 张乐乐, 高黎明, 陈克龙. 高分辨率遥感降水资料在青海湖流域及周边区域的适用性评价[J]. 水文, 2020, 40(5): 15-21. |
[2] | [ Zhang Lele, Gao Liming, Chen Kelong. Applicability evaluation of high-resolution remote sensing precipitation data in Qinghai Lake basin and surrounding areas[J]. Journal of China Hydrology, 2020, 40(5): 15-21. ] |
[3] | Ma Y, Tang G, Long D, et al. Similarity and error intercomparison of the GPM and its predecessor-TRMM multisatellite precipitation analysis using the best available hourly gauge network over the Tibetan Plateau[J]. Remote Sensing, 2016, 8(7): 569. ] |
[4] | 袁飞, 赵晶晶, 任立良, 等. TRMM多卫星测雨数据在赣江上游径流模拟中的应用[J]. 天津大学学报: 自然科学与工程技术版, 2013, 46(7): 611-616. |
[4] | [ Yuan Fei, Zhao Jingjing, Ren Liliang, et al. Application of TRMM multi-satellite rainfall data in runoff simulation of the upper reaches of Ganjiang River[J]. Journal of Tianjin University: Science and Technology, 2013, 46(7): 611-616. ] |
[5] | 窦世卿, 张寒博, 徐勇, 等. TRMM降水数据在长江流域的降尺度分析与校正[J]. 中国农业气象, 2021, 42(5): 377-389. |
[5] | [ Dou Shiqing, Zhang Hanbo, Xu Yong, et al. Downscaling analysis and correction of TRMM precipitation data in the Yangtze River Basin[J]. Chinese Journal of Agrometeorology, 2021, 42(5): 377-389. ] |
[6] | 宋海清, 朱仲元, 李云鹏. 陆面同化及再分析降水资料在内蒙古地区的适用性[J]. 干旱区研究, 2021, 38(6): 1624-1636. |
[6] | [ Song Haiqing, Zhu Zhongyuan, Li Yunpeng. Validation of land data assimilation and reanalysis precipitation datasets over Inner Mongolia[J]. Arid Zone Research, 2021, 38(6): 1624-1636. ] |
[7] | 杜军凯, 贾仰文, 李晓星, 等. 基于TRMM卫星降水的太行山区降水时空分布格局[J]. 水科学进展, 2019, 30(1): 1-13. |
[7] | [ Du Junkai, Jia Yangwen, Li Xiaoxing, et al. Study on the spatial-temporal distribution pattern of precipitation in the Taihang Mountain region using TRMM data[J]. Advances in Water Science, 2019, 30(1): 1-13 ] |
[8] | 温婷婷, 郭英香, 董少睿, 等. 1979—2017年CRU, ERA5, CMFD格点降水数据在青藏高原适用性评估[J]. 干旱区研究, 2022, 39(3): 684-697. |
[8] | [ Wen Tingting, Guo Yingxiang, Dong Shaorui, et al. Assessment of CRU, ERA5, CMFD grid precipitation data for the Tibetan Plateau from 1979 to 2017[J]. Arid Zone Research, 2022, 39(3): 684-697. ] |
[9] | 谷黄河, 余钟波, 杨传国, 等. 卫星雷达测雨在长江流域的精度分析[J]. 水电能源科学, 2010, 20(8): 3-6. |
[9] | [ Gu Huanghe, Yu Zhongbo, Yang Chuanguo, et al. Accuracy analysis of satellite radar rain measurement in the Yangtze basin[J]. Water Resource And Power, 2010, 20(8): 3-6. ] |
[10] | 崔路明, 王思梦, 刘轶欣, 等. TRMM和GPM卫星降水数据在中国三大流域的降尺度对比研究[J]. 长江流域资源与环境, 2021, 30(6): 1317-1328. |
[10] | [ Cui Luming, Wang Simeng, Liu Yixin, et al. Comparative study on downscaling of TRMM and GPM satellite precipitation data in three major river basins in China[J]. Resources and Environment in The Yangtze Basin, 2021, 30(6): 1317-1328. ] |
[11] | 孙铭悦, 吕海深, 朱永华, 等. 2套气象数据在资料缺乏地区的适用性评估——以呼图壁河流域为例[J]. 干旱区研究, 2022, 39(1): 94-103. |
[11] | [ Sun Mingyue, Lv Haishen, Zhu Yonghua, et al. Applicability assessment of two meteorological datasets in areas lacking data with the Hutubi River Basin as an example[J]. Arid Zone Research, 2022, 39(1): 94-103. ] |
[12] | 盛夏, 石玉立, 丁海勇. 青藏高原GPM降水数据空间降尺度研究[J]. 遥感技术与应用, 2021, 36(3): 571-580. |
[12] | [ Sheng Xia, Shi Yuli, Ding Haiyong. Spatial Downscaling of GPM Precipitation over the Tibetan Plateau[J]. Remote Sensing Technology and Application, 2021, 36(3): 571-580. ] |
[13] | 宁珊, 张正勇, 刘琳, 等. TRMM偏最小二乘降尺度降水模型在新疆不同地貌的适应性[J]. 农业工程学报, 2020, 36(12): 99-109. |
[13] | [ Ning Shan, Zhang Zhengyong, Liu Lin, et al. Adaptability of precipitation estimation method based on TRMM data combined with partial least squares downscaling in different landforms of Xinjiang, China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 99-109. ] |
[14] | Zhang T, Yang Y, Dong Z, et al. A multiscale assessment of three satellite precipitation products (TRMM, CMORPH, and PERSIANN) in the Three Gorges Reservoir Area in China[J]. Advances in Meteorology, 2021, 9979216: 1-27. |
[15] | Adler R F, Sapiano M R P, Huffman G J, et al. The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation[J]. Atmosphere, 2018, 9(4): 138. |
[16] | 李麒崙, 张万昌, 易路, 等. GPM与TRMM 降水数据在中国大陆的精度评估与对比[J]. 水科学进展, 2018, 29(3): 303-313. |
[16] | [ Li Qilun, Zhang Wanchang, Yi Lu, et al. Accuracy evaluation and comparison of GPM and TRMM precipitation product over Mainland China[J]. Advances in Water Science, 2018, 29(3): 303-313. ] |
[17] | Dhib S, Chaney N, Mannaerts C M, et al. Comparison of two bias correction methods for TRMM 3B42 satellite daily rainfall estimates over Northern Tunisia[J]. Arabian Journal of Geosciences, 2021, 14(7): 1-18. |
[18] | 刘江涛, 徐宗学, 赵焕, 等. 不同降水卫星数据反演降水量精度评价——以雅鲁藏布江流域为例[J]. 高原气象, 2019, 38(2): 386-396. |
[18] | [ Liu Jiangtao, Xu Zongxue, Zhao Huan, et al. Accuracy assessment for two satellite precipitation products: Case studies in the Yarlung Zangbo River Basin[J]. Plateau Meteorology, 2019, 38(2): 386-396. ] |
[19] | Prakash S, Mitra A K, AghaKouchak A, et al. A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region[J]. Journal of Hydrology, 2018, 556: 865-876. |
[20] | Elnashar A, Zeng H, Wu B, et al. Downscaling TRMM monthly precipitation using google earth engine and google cloud computing[J]. Remote Sensing, 2020, 12(23): 3860. |
[21] | 范雪薇, 刘海隆. 天山山区 TRMM 降水数据的空间降尺度研究[J]. 自然资源学报, 2018, 33(3): 478-488. |
[21] | [ Fan Xuewei, Liu Hailong. Downscaling method of TRMM satellite precipitation data over the Tianshan Mountains[J]. Journal of Natural Resources, 2018, 33(3): 478-488. ] |
[22] | 张寒博, 窦世卿, 温颖, 等. 遥感降水数据空间降尺度及干旱时空监测[J]. 水土保持学报, 2022, 36(1): 153-160. |
[22] | [ Zhang Hanbo, Dou Shiqing, Wen Ying, et al. Spatial downscaling of remote sensing precipitation data and spatiotemporal monitoring of drought[J]. Journal of Soil and Water Conservation, 2022, 36(1): 153-160. ] |
[23] | 李豪, 雷苑, 李鹏, 等. 复杂地形下 TRMM 降水数据的降尺度研究: 以四川省为例[J]. 中国农业气象, 2019, 40(10): 607-619. |
[23] | [ Li Hao, Lei Yuan, Li Peng, et al. Downscaling of TRMM precipitation data under complex terrain: A case study of Sichuan Province[J]. Chinese Journal of Agrometeorology, 2019, 40(10): 607-619. ] |
[24] | 徐彬仁, 魏瑗瑗. 基于随机森林算法对青藏高原 TRMM 降水数据进行空间统计降尺度研究[J]. 国土资源遥感, 2018, 30(3): 181-188. |
[24] | [ Xu Binren, Wei Yuanyuan. Spatial statistics of TRMM precipitation in the Tibetan Plateau using random forest algorithm[J]. Remote Sensing for Land & Resources, 2018, 30(3): 181-188. ] |
[25] | Ghorbanpour A K, Hessels T, Moghim S, et al. Comparison and assessment of spatial downscaling methods for enhancing the accuracy of satellite-based precipitation over Lake Urmia Basin[J]. Journal of Hydrology, 2021, 596: 126055. |
[26] | 高黎明, 张乐乐, 陈克龙, 等. 青海湖流域高寒湿地光合有效辐射特征[J]. 干旱区研究, 2018, 35(1): 50-56. |
[26] | [ Gao Liming, Zhang Lele, Chen Kelong, et al. Characteristics of the photosynthetically active radiation in the alpine wetland, Qinghai lake watershed[J]. Arid Zone Research, 2018, 35(1): 50-56. ] |
[27] | 刘彩红, 王朋岭, 温婷婷, 等. 1960—2019 年黄河源区气候变化时空规律研究[J]. 干旱区研究, 2021, 38(2): 293-302. |
[27] | [ Liu Caihong, Wang Pengling, Wen Tingting, et al. Spatio-temporal characteristics of climate change in the Yellow River source area from 1960 to 2019[J]. Arid Zone Research, 2021, 38(2): 293-302. ] |
[28] | 俞晓琴, 孟先强, 吴华武, 等. 青海湖流域有色可溶性有机物来源与特征分析[J]. 环境科学, 2022, 43(2): 826-836. |
[28] | [ Yu Xiaoqin, Meng Xianqiang, Wu Huawu, et al. Source and characteristics analysis of colored soluble organic matter in Qinghai Lake Basin[J]. Environmental Science, 2022, 43(2): 826-836. ] |
[29] | 高晨轩. 利用多源卫星测高数据监测青海湖水位变化[D]. 兰州: 兰州交通大学, 2021. |
[29] | [ Gao Chenxuan. Using Multi-source Satellite Altimeter Data to Monitor the Water Level Change of Qinghai Lake[D]. Lanzhou: Lanzhou Jiaotong University, 2021. ] |
[30] | Tang L, Duan X, Kong F, et al. Influences of climate change on area variation of Qinghai Lake on Qinghai-Tibetan Plateau since 1980s[J]. Scientific Reports, 2018, 8(1): 1-7. |
[31] | 张晶, 鄂崇毅, 许乃军, 等. 青海湖流域气候变化对湖泊水位变化的影响[J]. 青海环境, 2021, 31(2): 71-75, 81. |
[31] | [ Zhang Jing, E Chongyi, Xu Naijun, et al. Impact of climate change in Qinghai Lake Basin on lake water level change[J]. Journal of Qinghai Environment, 2021, 31(2): 71-75, 81. ] |
[32] | 王志刚, 曹生奎, 曹广超. 近15年来青海湖流域气温、降水变化对植被物候驱动分析[J]. 水土保持研究, 2022, 29(1): 249-255. |
[32] | [ Wang Zhigang, Cao Shengkui, Cao Guangchao. Analysis on the drive of temperature and precipitation changes to vegetation phenology of the Qinghai Lake Basin in the past 15 years[J]. Research of Soil and Water Conservation, 2022, 29(1): 249-255. ] |
[33] | 姬凯, 王士新, 左洪超, 等. 东亚副热带急流经向位置对中国西北东部盛夏降水的影响[J]. 干旱区研究, 2020, 37(1): 10-17. |
[33] | [ Ji Kai, Wang Shixin, Zuo Hongchao, et al. Effect of meridional position of East Asian subtropical jet on midsummer precipitation in eastern part of Northwest China[J]. Arid Zone Research, 2020, 37(1): 10-17. ] |
[34] | 杨昭明, 张调风. 1961—2017 年青藏高原东北部雨季降水量变化及其贡献度分析[J]. 干旱区研究, 2021, 38(1): 22-28. |
[34] | [ Yang Zhaoming, Zhang Tiaofeng. Analysis of precipitation change and its contribution in the rainy season in the northeast Qinghai-Tibet Plateau from 1961 to 2017[J]. Arid Zone Research, 2021, 38(1): 22-28. ] |
[35] | 卢新玉, 魏鸣, 王秀琴, 等. TRMM-3B43降水产品在新疆地区的适用性研究[J]. 国土资源遥感, 2016, 28(3): 166-173. |
[35] | [ Lu Xinyu, Wei Ming, Wang Xiuqin, et al. Applicability research on TRMM-3B43 precipitation over Xinjiang[J]. Remote Sensing for Land & Resources, 2016, 28(3): 166-173. ] |
[36] | Xu R, Tian F, Yang L, et al. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(2): 910-924. |
[37] | 张乐乐, 高黎明, 赵林, 等. 降水观测误差修正研究进展[J]. 地球科学进展, 2017, 32(7): 723-730. |
[37] | [ Zhang Lele, Gao Liming, Zhao Lin, et al. Review on correction of errors in precipitation measurement[J]. Advances in Earth Science, 2017, 32(7): 723-730. ] |
[38] | Shi Y, Song L. Spatial downscaling of monthly TRMM precipitation based on EVI and other geospatial variables over the Tibetan Plateau from 2001 to 2012[J]. Mountain Research and Development, 2015, 35(2): 180-194. |
[39] | 何晓波, 叶柏生, 丁永建. 青藏高原唐古拉山区降水观测误差修正分析[J]. 水科学进展, 2009, 20(3): 403-408. |
[39] | [ He Xiaobo, Ye Baisheng, Ding Yongjian. Bias correction for precipitation mesuament in Tanggula Mountain Tibetan Plateau[J]. Advances in Water Science, 2009, 20(3): 403-408. ] |
[40] | 吴建峰, 陈阿林, 嵇涛, 等. TRMM 降水数据在复杂山地的精度评估——以重庆市为例[J]. 水土保持通报, 2014, 34(4): 201-207. |
[40] | [ Wu Jianfeng, Chen Alin, Ji Tao, et al. Accuracy evaluation of tropical rainfall measuring mission [recipitation data in complex mountainous areas: Taking Chongqing City as an example[J]. Bulletin of Soil and Water Conservation, 2014, 34(4): 201-207. ] |
[41] | 李琼, 杨梅学, 万国宁, 等. TRMM 3B43降水数据在黄河源区的适用性评价[J]. 冰川冻土, 2016, 38(3): 620-633. |
[41] | [ Li Qiong, Yang Meixue, Wan Guoning, et al. Analysis of the accuracy of TRMM 3B43 precipitation data in the source region of the Yellow River[J]. Journal of Glaciology and Geocryology, 2016, 38(3): 620-633. ] |
[42] | Sapiano M R P, Arkin P A. An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data[J]. Journal of Hydrometeorology, 2009, 10(1): 149-166. |
[43] | Ren W, Yao T, Yang X, et al. Implications of variations in δ18O and δD in precipitation at Madoi in the eastern Tibetan Plateau[J]. Quaternary International, 2013, 313: 56-61. |
/
〈 | 〉 |