Effect of different phosphorus supply levels on rhizosphere microbial functional diversity of Medicago sativa
Received date: 2022-03-10
Revised date: 2022-04-28
Online published: 2022-10-25
Exploring the metabolic functional diversity of Medicago sativa rhizosphere microorganisms at different levels of phosphorus supply can further our understanding of the mechanism of efficient fertilizer use by M. sativa. Applying the biolog method through field experiments, we investigated the metabolic characteristics of the M. sativa rhizosphere microbial community under five different levels of phosphorus supply. The results showed that the application of phosphorus fertilizer could significantly improve the metabolic activity of M. sativa rhizosphere microorganisms; the Simpson and Richness indexes reached maximum values when the phosphorus supply level was P3 (300 kg·hm-2), which improved the utilization of different classified carbon sources by microorganisms. When the phosphorus fertilizer concentration was too high, it significantly reduced the Simpson index of the microbial community and also reduced the utilization of various carbon sources by microorganisms. Principal component analysis showed that there were significant differences in the utilization of different carbon sources by rhizosphere microorganisms at different levels of phosphorus supply. The smallest differences in the utilization of various carbon sources by the microbial community were observed at the highest level of phosphorus supply (P4, 450 kg·hm-2).
XING Linmu,LI Qiang,GAO Yuanqianhui,LI Ning . Effect of different phosphorus supply levels on rhizosphere microbial functional diversity of Medicago sativa[J]. Arid Zone Research, 2022 , 39(5) : 1496 -1503 . DOI: 10.13866/j.azr.2022.05.14
[1] | 王亚玲, 李晓芳, 师尚礼, 等. 紫花苜蓿生产性能构成因子分析与评价[J]. 中国草地学报, 2007, 29(5): 8-15. |
[1] | [Wang Yaling, Li Xiaofang, Shi Shangli, et al. Analysis and evaluation of alfalfa production performance components of different alfalfa[J]. Chinese Journal of Grassland, 2007, 29(5): 8-15. ] |
[2] | 王文信. 中国苜蓿种植业发展的对策[J]. 北京农学院学报, 2022, 37(1): 117-120. |
[2] | [Wang Wenxin. Countermeasures for the development of alfalfa planting industry in China[J]. Journal of Beijing University of Agricultural, 2022, 37(1): 117-120. ] |
[3] | 冯骁骋, 曾洁, 王伟, 等. 我国苜蓿产业发展现状及存在的问题[J]. 黑龙江畜牧兽医, 2018(2): 135-137. |
[3] | [Feng Xiaopin, Zeng Jie, Wang Wei, et al. The present situation and existing problems of alfalfa industry development in our country[J]. Heilongjiang Animal Husbandry and Veterinary Medicine, 2018(2): 135-137. ] |
[4] | 陆太伟, 石雅飞, 李进文, 等. 磷肥对紫花苜蓿及其根瘤生长的影响研究[J]. 农业与技术, 2013, 33(11): 3-4. |
[4] | [Lu Taiwei, Shi Yafei, Li Jinwen, et al. Study on the effect of phosphorus fertilizer on the growth of alfalfa and its root nodules[J]. Agriculture & Technology, 2013, 33(11): 3-4. ] |
[5] | 王园园, 张红香, 金成吉, 等. 磷肥对紫花苜蓿生产力影响的研究概述[J]. 中国农学通报, 2020, 36(35): 72-77. |
[5] | [Wang Yuanyuan, Zhang Hongxiang, Jin Chengji, et al. Effects of phosophorus fertilizer on alfalfa[J]. Chinese Agronomy Bulletin, 2020, 36(35): 72-77. ] |
[6] | 王泽环. 不同磷水平对黄花苜蓿产量和品质的影响[D]. 呼和浩特: 内蒙古大学, 2008. |
[6] | [Wang Zehuan. Effect of Phosphorus Levels on Forage Yield and Quality on Medicago Falcata[D]. Hohhot: Inner Mongolia University, 2008. ] |
[7] | 张杰. 施肥对紫花苜蓿生长特性和土壤肥力的影响研究[D]. 杨凌: 西北农林科技大学, 2007. |
[7] | [Zhang Jie. Study on the Effect of Fertilization between Alfalfa Characteristics and Soil Fertility[D]. Yangling: Northwest A & F University, 2007. ] |
[8] | 蔺蕊. 北疆盐碱地苜蓿施肥参数与高产施肥初步研究[D]. 乌鲁木齐: 新疆农业大学, 2004. |
[8] | [Lin Rui. Intial Study on Fertilization Method for High Yield of Alfalfa on Saline Land in North Xinjiang[D]. Urumqi: Xinjiang Agricultural University, 2004. ] |
[9] | Wang P, Snijders R, Kohlen W, et al. Medicago SPX1 and SPX3 regulate phosphate homeostasis, mycorrhizal colonization, and arbuscule degradation[J]. The Plant Cell, 2021, 33(11): 3470-3486. |
[10] | 田莉. 植物的磷素营养和土壤磷的生物有效性研究[J]. 农业与技术, 2015, 35(20): 22. |
[10] | [Tian Li. Research on phosphorus nutrition of plants and biological effectiveness of soil phosphorus[J]. Agriculture and Technology, 2015, 35(20): 22. ] |
[11] | 张瑞福. 根际微生物: 农业绿色发展中大有作为的植物第二基因组[J]. 生物技术通报, 2020, 36(9): 1-2. |
[11] | [Zhang Ruifu. Rhizosphere microorganisms: The second genome of plants with great potential in green agriculture[J]. Biotechnology Bulletin, 2020, 36(9): 1-2. ] |
[12] | 徐文静, 靳晓东, 杨秋生. 植物根际微生物的影响因素研究进展[J]. 河南农业科学, 2014, 43(5): 6-12. |
[12] | [Xu Wenjing, Jin Xiaodong, Yang Qiusheng. Research progress on factors influencing plant rhizosphere microorganism[J]. Journey of Henan Agricultural Science, 2014, 43(5): 6-12. ] |
[13] | 覃潇敏, 郑毅, 汤利, 等. 施氮对间作条件下玉米、马铃薯根际微生物群落功能多样性的影响[J]. 农业资源与环境学报, 2015, 32(4): 354-362. |
[13] | [Qin Xiaomin, Zheng Yi, Tang Li, et al. Effects of nitrogen application rates on rhizosphere microbial community functional diversity in maize and potato intercropping[J]. Journal of Agricultural Resources and Environment, 2015, 32(4): 354-362. ] |
[14] | 付家晖, 薛娜娜, 潘响亮. 博斯腾湖人工湿地中微生物群落空间分布特征[J]. 干旱区研究, 2020, 37(2): 487-495. |
[14] | [Fu Jiahui, Xue Na’na, Pan Xiangliang. Spatial distribution of microbial communities in the wetlandsewage treatment system constructed on Bosten Lake[J]. Arid Zone Research, 2020, 37(2): 487-495. ] |
[15] | 樊晓刚, 金轲, 李兆君, 等. 不同施肥和耕作制度下土壤微生物多样性研究进展[J]. 植物营养与肥料学报, 2010, 16(3): 744-751. |
[15] | [Fan Xiaogang, Jin Ke, Li Zhaojun, et al. Soil microbial diversity under different fertilization and tillage practices: A review[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(3): 744-751. ] |
[16] | 徐接亮, 张凤华, 李变变, 等. 施肥对油莎豆根际微生物群落特性的影响[J]. 干旱区研究, 2021, 38(6): 1741-1749. |
[16] | [Xu Jieliang, Zhang Fenghua, Li Bianbian, et al. Effects of fertilization on characteristics of soil microbial community in the rihizosphere of Cyperus esculentus in the sandy area of Xinjiang[J]. Arid Zone Research, 2021, 38(6): 1741-1749. ] |
[17] | Song C C, Liu D Y, Song Y Y, et al. Effect of exogenous phosphorus addition on soil respiration in Calamagrostis angustifolia freshwater marshes of Northeast China[J]. Atmospheric Environment, 2011, 45(7): 1-4. |
[18] | 单佩佩. 牡丹体内外磷循环和根际微生物种群构成对外源磷素的响应[D]. 泰安: 山东农业大学, 2016. |
[18] | [Shan Peipei. Phosphorus Cycling in Peony Vivo and Vitor, Rhizosphere Microorganisms Constitute Response to Exogenous Phosphorus Removal[D]. Tai’an: Shandong Agricultural University, 2016. ] |
[19] | 湛钰, 高丹丹, 盛荣, 等. 磷差异性调控水稻根际nirK/nirS型反硝化菌组成与丰度[J]. 环境科学, 2019, 40(7): 3304-3312. |
[19] | [Zhan Yu, Gao Dandan, Sheng Rong, et al. Differential responses of rhizospheric nirK-and nirS-type denitrifier communities to different phosphorus levels in paddy soil[J]. Environmental Science, 2019, 40(7): 3304-3312. ] |
[20] | Cory C C, Alan R T. Nutrient additions to a tropicalrain forest drive substantial soil carbon dioxide losses to the atmosphere[J]. PNAS, 2006, 103(27): 10316-10321. |
[21] | 崔佩佩. 不同施肥对高粱生长及根际微生物功能多样性的影响[D]. 太原: 山西大学, 2018. |
[21] | [Cui Peipei. Effects of Different Fertilization on the Growth of Sorghum and the Functional Diversity of Rhizosphere Microorganisms[D]. Taiyuan: Shanxi University, 2018. ] |
[22] | 陈波浪, 蒋平安, 盛建东. 磷肥对棉田土壤有效磷及土壤酶活性的影响[J]. 土壤通报, 2014, 45(1): 185-188. |
[22] | [Chen Bolang, Jiang Ping’an, Sheng Jiandong. Effect of phosphorus fertilizers on soil available phosphorus and soil enzyme activity in cotton field[J]. Chinese Journal of Soil Science, 2014, 45(1): 185-188. ] |
[23] | 郑丽萍, 龙涛, 林玉锁, 等. Biolog-ECO解析有机氯农药污染场地土壤微生物群落功能多样性特征[J]. 应用与环境生物学报, 2013, 19(5): 759-765. |
[23] | [Zheng Liping, Long Tao, Lin Yusuo, et al. Biolog-ECO analysis of the microbial community functional diversity in organochlorine contaminated soil[J]. Chinese Journal of Applied & Environmental Biology, 2013, 19(5): 759-765. ] |
[24] | 武俊男. 长期不同施肥对玉米根际微生物多样性及功能菌群的影响[D]. 长春: 吉林农业大学, 2018. |
[24] | [Wu Junnan. Effects of Long-term Different Fertilization on Microbial Diversity and Functional Microflora in Corn Rhizosohere[D]. Changchun: Jilin Agricultural University, 2018. ] |
[25] | 张鹏, 李颖, 王业林, 等. 短脚锦鸡儿灌丛对植物群落和土壤微生物群落的促进效应研究[J]. 干旱区研究, 2021, 38(2): 421-428. |
[25] | [Zhang Peng, Li Ying, Wang Yelin, et al. The positive effect of Caragana breviflora shrubs on plant communities and soil microbial communities in the inner Mongolia desert region[J]. Arid Zone Research, 2021, 38(2): 421-428. ] |
[26] | 高晓奇, 肖能文, 叶瑶, 等. 基于Biolog-ECO分析长庆油田土壤微生物群落功能多样性特征[J]. 应用与环境生物学报, 2014, 20(5): 913-918. |
[26] | [Gao Xiaoqi, Xiao Nengwen, Ye Yao, et al. Analysis of microbial community functional diversity in the Changqing Oilfield based on Biology-ECO method[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(5): 913-918. ] |
[27] | Yuan W, Yu L F, Zhang J C, et al. Relationship between vegetation restoration and soil microbial characteristics in degraded Karstregions: A case study[J]. Pedosphere, 2011, 21(1): 132-138. |
[28] | Garland J L. Analysis and interpretation of community-level physiological profiles in microbial ecology[J]. FEMS Microbiology Ecology, 1997, 24(4): 289-300. |
[29] | Choi K, Dobbs F C. Comparison of two kinds of biolog micro-plate(GN and ECO) in their ability to distinguish among aquatic microbial communities[J]. Journal of Microbiological Methods, 1999, 36(3): 203-213. |
[30] | 高明霞, 孙瑞, 崔全红, 等. 长期施用化肥对塿土微生物多样性的影响[J]. 植物营养与肥料学报, 2015, 21(6): 1572 -1580. |
[30] | [Gao Mingxia, Sun Rui, Cui Quanhong, et al. Effects of long-term chemical fertilizer application on microbial diversity in anthropogenic loess soil[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1572-1580. ] |
[31] | 张锡洲, 李廷轩, 王永东. 植物生长环境与根系分泌物的关系[J]. 土壤通报, 2007, 38(4): 785-789. |
[31] | [Zhang Xizhou, Li Tingxuan, Wang Yongdong. Relationship between growth environment and root exudates of plants: A review[J]. Chinese Journal of Soil Science, 2007, 38(4): 785-789. ] |
[32] | Tang X Y, Placella S A, Daydé F, et al. Phosphorus availability and microbial community in the rhizosphere of inter cropped cereal and legume along a P-fertilizer gradient[J]. Plant & Soil, 2016, 407(1-2): 1-16. |
[33] | 罗汉东. 不同磷水平施肥对油茶生长及土壤环境动态影响[D]. 南昌: 江西农业大学, 2017. |
[33] | [Luo Handong. Effect of Different Levels of Phosphorus Fertilization Growth and Soil Enviroment Dynamic of Camellia oleifera Abel[D]. Nanchang: Jiangxi Agricultural University, 2017. ] |
[34] | 廖朝选, 钱青青, 齐凯, 等. 施磷肥对大豆土壤微生物数量及酶活性的影响[J]. 贵阳学院学报(自然科学版), 2020, 15(3): 73-79. |
[34] | [Liao Zhaoxuan, Qian Qingqing, Qi Kai, et al. Effect of phosphorus fertilizer on soil microbial groups and enzyme activity of different soybean varieties[J]. Journal of Guiyang University(Natural Science Edition), 2020, 15(3): 73-79. ] |
[35] | 张恩平, 田悦悦, 李猛, 等. 长期不同施肥对番茄根际土壤微生物功能多样性的影响[J]. 生态学报, 2018, 38(14): 5027-5036. |
[35] | [Zhang Enping, Tian Yueyue, Li Meng, et al. Effects of various long-term fertilization regimes on soil microbial functional diversity in tomato rhizosphere soil[J]. Acta Ecologica Sinica, 2018, 38(14): 5027-5036. ] |
[36] | 刘俊杰. 磷浓度对大豆根际微生物群落结构及功能的影响[D]. 哈尔滨: 东北农业大学, 2009. |
[36] | [Liu Junjie. Effect of Different Phosphorus Concentration on Microbial Community Structure and Function in Soybean Rhizosphere[D]. Harbin:Northeast Agricultural University, 2009. ] |
[37] | 张萌萌, 敖红, 张景云, 等. 建植年限对紫花苜蓿根际土壤微生物群落功能多样性的影响[J]. 草业科学, 2014, 31(5): 787-796. |
[37] | [Zhang Mengmeng, Ao Hong, Zhang Jingyun, et al. Effects of planting years on functional diversity of carbon-metabolic microbial community in rhizosphere soils of alfalfa[J]. Grassland Science, 2014, 31(5): 787-796. ] |
/
〈 | 〉 |