Plant Ecology

Responses of leaf structural and chemical trait of Tamarix ramosissima to soil water changes

Expand
  • 1. College of Ecology and Environment, Xinjiang University, Urumqi 830017, Xinjiang, China
    2. Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, Xinjiang, China
    3. Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe 833300, Xinjiang, China
    4. Ecology Post-Doctoral Research Station, Xinjiang University, Urumqi 830017, Xinjiang, China

Received date: 2022-02-27

  Revised date: 2022-06-11

  Online published: 2022-10-25

Abstract

Desert plants have developed unique leaf traits as part of their ecological response to long-term drought stress. We investigated the population characteristics of Tamarix ramosissima under different soil water conditions at the northern edge of the Tarim Basin and measured and analyzed its leaf structural and chemical traits, along with the main soil physicochemical properties, in this study. that the following was found: (1) soil water had a significant effect on several leaf traits of Tamarix ramosissima, including total nitrogen and phosphorus content, C:P, C:N, mean leaf thickness, and mean leaf area. (2) With the increase of soil water content, the N:P of Tamarix ramosissima leaves decreased, and its growth gradually changed from phosphorus-limited to nitrogen-limited. (3) There was a significant negative correlation between the total phosphorus content and C:P and N:P of Tamarix ramosissima leaves (P < 0.01) and a significant positive correlation between C:N and the mean leaf area (P < 0.05). The results indicate that soil water content is an important factor affecting the leaf functional traits of Tamarix ramosissima, and it adapts to the arid environment through the synergistic changes of some leaf traits. This study provides a basis for the evaluation of plant ecological adaptations in the ecological conservation and restoration processes in arid desert areas.

Cite this article

LI Zehou,LI Ruixi,ZHANG Shubin,WANG Chongbin,ZHENG Mingming,DONG Yeqing,WU Xue . Responses of leaf structural and chemical trait of Tamarix ramosissima to soil water changes[J]. Arid Zone Research, 2022 , 39(5) : 1486 -1495 . DOI: 10.13866/j.azr.2022.05.13

References

[1] 杨磊, 张子豪, 李宗善. 黄土高原植被建设与土壤干燥化:问题与展望[J]. 生态学报, 2019, 39(20): 7382-7388.
[1] [Yang Lei, Zhang Zihao, Li Zongshan. Effects of large-scale re-vegetation on soil desiccation in the Loess Plateau: Problems and perspectives[J]. Acta Ecologica Sinica, 2019, 39(20): 7382-7388. ]
[2] 张伟, 刘德玉, 喻生波, 等. 极端干旱区敦煌西湖湿地土壤水分特征及空间变异性研究[J]. 甘肃地质, 2020, 29(1-2): 79-84.
[2] [Zhang Wei, Liu Deyu, Yu Shengbo, et al. Study on soil moisture characteristics and spatial variability of Dunhuang Xihu wetlands in extremely arid regions[J]. Gansu Geology, 2020, 29(1-2): 79-84. ]
[3] Mordecai E A. Soil moisture and fungi affect seed survival in California grassland annual plants[J]. PLoS One, 2012, 7(6): e39083.
[4] Thorne M A, Frank D A. The effects of clipping and soil moisture on leaf and root morphology and root respiration in two temperate and two tropical grasses[J]. Plant Ecology, 2009, 200(2): 205-215.
[5] Kapoor D, Bhardwaj S, Landi M, et al. The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production[J]. Applied Sciences, 2020, 10(16): 5692.
[6] Gutiérrez-Boem F H, Thomas G W. Phosphorus nutrition and water deficits in field-grown soybeans[J]. Plant and Soil, 1999, 207(1): 87-96.
[7] 张景光, 王新平, 李新荣, 等. 荒漠植物生活史对策研究进展与展望[J]. 中国沙漠, 2005, 25(3): 306-314.
[7] [Zhang Jingguang, Wang Xinping, Li Xinrong, et al. Advances and prospect of researches on desert plant life history strategies[J]. Journal of Desert Research, 2005, 25(3): 306-314. ]
[8] 王飞, 郭树江, 樊宝丽, 等. 不同年代梭梭叶功能性状差异及其与土壤因子的关系[J]. 草业科学, 2020, 37(12): 2486-2496.
[8] [Wang Fei, Guo Shujiang, Fan Baoli, et al. Variation in leaf functional traits of different-aged Haloxylon ammodendron communities, and the relationship with soil factors[J]. Pratacultural Science, 2020, 37(12): 2486-2496. ]
[9] 李金霞, 孙小妹, 刘娜, 等. 黑果枸杞功能性状对氮磷添加的响应及其可塑性[J]. 应用生态学报, 2021, 32(4): 1279-1288.
[9] [Li Jinxia, Sun Xiaomei, Liu Na, et al. Response and plasticity of functional traits in Lycium ruthenicum to N and P addition[J]. Chinese Journal of Applied Ecology, 2021, 32(4): 1279-1288. ]
[10] Lopez-Iglesias B, Villar R, Poorter L. Functional traits predict drought performance and distribution of Mediterranean woody species[J]. Acta Oecologica, 2014, 56: 10-18.
[11] Roscher C, Schumacher J, Lipowsky A, et al. A functional trait-based approach to understand community assembly and diversity-productivity relationships over 7 years in experimental grasslands[J]. Perspectives in Plant Ecology Evolution and Systematics, 2013, 15(3): 139-149.
[12] Bernhardt-Römermann M, Gray A, Vanbergen A J, et al. Functional traits and local environment predict vegetation responses to disturbance: A Pan-European multi-site experiment[J]. Journal of Ecology, 2011, 99(3): 777-787.
[13] Gross N, Le Bagousse-Pinguet Y, Liancourt P, et al. Functional trait diversity maximizes ecosystem multifunctionality[J]. Nature Ecology and Evolution, 2017, 1(5): 1-9.
[14] 贺鹏程, 叶清. 基于植物功能性状的生态学研究进展:从个体水平到全球尺度[J]. 热带亚热带植物学报, 2019, 27(5): 523-533.
[14] [He Pengcheng, Ye Qing. Plant functional traits: from individual plant to global scale[J]. Journal of Tropical and Subtropical Botany, 2019, 27 (5): 523-533 ]
[15] Valladares F, Wright S J, Lasso E, et al. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest[J]. Ecology, 2000, 81(7): 1925-1936.
[16] 岳喜元, 左小安, 庾强, 等. 降水量和短期极端干旱对典型草原植物群落及优势种羊草(Leymus chinensis)叶性状的影响[J]. 中国沙漠, 2018, 38(5): 1009-1016.
[16] [Yue Xiyuan, Zuo Xiao’an, Yu Qiang, et al. Effects of precipitation and short term extreme drought on leaf traits in Inner Mongolia typical steppe[J]. Journal of Desert Research, 2018, 38(5): 1009-1016. ]
[17] Niinemets Ü. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs[J]. Ecology, 2001, 82(2): 453-469.
[18] 冯燕, 王彦荣, 胡小文. 水分胁迫对两种荒漠灌木幼苗生长与水分利用效率的影响[J]. 草业学报, 2011, 20(4): 293-298.
[18] [Feng Yan, Wang Yanrong, Hu Xiaowen. Effects of soil water stress on seedling growth and water use efficiency of two desert shrubs[J]. Acta Prataculturae Sinica, 2011, 20(4): 293-298. ]
[19] 熊炳霖, 王仕稳, 王鑫月, 等. 干旱胁迫下氮肥对玉米叶片衰老影响及与碳氮平衡的关系[J]. 玉米科学, 2016, 24(3): 138-146.
[19] [Xiong Binglin, Wang Shiwen, Wang Xinyue, et al. Effects of nitrogenous fertilizer on leaf senescence of maize and the associate with carbon/nitrogen balance under drought stress[J]. Journal of Maize Sciences, 2016, 24(3): 138-146. ]
[20] 任昱, 吴波, 卢琦, 等. 荒漠植物白刺叶片气孔性状对模拟增雨的响应[J]. 林业科学研究, 2015, 28(6): 865-870.
[20] [Ren Yu, Wu Bo, Lu Qi, et al. Responses of stomatal traits of desert plant Nitraria tangutorum leaves to artificially simulated precipitation[J]. Forest Research, 2015, 28(6): 865-870. ]
[21] Ogaya R, Penuelas J. Contrasting foliar responses to drought in Quercus ilex and Phillyrea latifolia[J]. Biologia Plantarum, 2006, 50(3): 373-382.
[22] 麻雪艳, 周广胜. 干旱对夏玉米苗期叶片权衡生长的影响[J]. 生态学报, 2018, 38(5): 1758-1769.
[22] [Ma Xueyan, Zhou Guangsheng. Effects of drought on the trade-off growth of leaf traits of summer maize in the seedling stage[J]. Acta Ecologica Sinica, 2018, 38(5): 1758-1769. ]
[23] 尹林克. 中亚荒漠生态系统中的关键种──柽柳(Tamarix spp.)[J]. 干旱区研究, 1995, 12(3): 43-47.
[23] [Yin Linke. Tamarix spp: The keystone species of desert ecosystem[J]. Arid Zone Research, 1995, 12(3): 43-47. ]
[24] 贡璐, 刘曾媛, 塔西甫拉提·特依拜. 极端干旱区绿洲土壤盐分特征及其影响因素[J]. 干旱区研究, 2015, 32(4): 657-662.
[24] [Gong Lu, Liu Zengyuan, Tashpolat Tiyip. Soil salinity characteristic and its determinant factors at different soil types in oasis of extreme arid region[J]. Arid Zone Research, 2015, 32(4): 657-662. ]
[25] 王朝辉, 李生秀. 不同生育期缺水和补充灌水对冬小麦氮磷钾吸收及分配影响[J]. 植物营养与肥料学报, 2002, 8(3): 265-270.
[25] [Wang Zhaohui, Li Shengxiu. Effects of water deficit and supplemental irrigation at different growing stage on uptake and distribution of nitrogen, phosphorus and potassium in winter wheat[J]. Plant Nutrition and Fertilizer Science, 2002, 8(3): 265-270. ]
[26] 张耀艺, 倪祥银, 杨静, 等. 中亚热带同质园不同树种氮磷重吸收及化学计量特征[J]. 应用生态学报, 2021, 32(4): 1154-1162.
[26] [Zhang Yaoyi, Ni Xiangyin, Yang Jing, et al. Nitrogen and phosphorus resorption and stoichiometric characteristics of different tree species in a mid-subtropical common-garden, China[J]. Chinese Journal of Applied Ecology, 2021, 32(4): 1154-1162. ]
[27] 杨洁, 单立山, 白亚梅, 等. 氮添加和降水变化对红砂生理指标的影响[J]. 干旱区研究, 2021, 38(2): 460-468.
[27] [Yang Jie, Shan Lishan, Bai Yamei, et al. Effects of nitrogen addition and precipitation on Reaumuria soongorica physiological indices[J]. Arid Zone Research, 2021, 38(2): 460-468. ]
[28] 张殿忠, 汪沛洪. 水分胁迫与植物氮代谢的关系水分胁迫时氮素对小麦叶片氮代谢的影响[J]. 西北农林科技大学学报(自然科学版), 1988, 16(4): 15-21.
[28] [Zhang Dianzhong, Wang Peihong. Relationship between water stress and plant nitrogen metabolism: effects of fertilizer nitrogen on nitrogen metabolism in water stressed wheat leaves[J]. Journal of Northwest A & F University(Natural Science Edition), 1988, 16(4): 15-21. ]
[29] 朱再标, 梁宗锁, 王渭玲, 等. 氮磷营养对柴胡抗旱性的影响[J]. 干旱地区农业研究, 2005, 23(2): 95-99, 114.
[29] [Zhu Zaibiao, Liang Zongsuo, Wang Weiling, et al. Effects of Nitrogen and phosphorous on the drought resistance of Bupleurum chinense[J]. Agricultural Research in the Arid Areas, 2005, 23(2): 95-99, 114. ]
[30] 李善家, 苟伟, 王辉, 等. 黑河下游黑果枸杞叶片C、N、P特征及对土壤水盐的响应[J]. 生态学报, 2019, 39(19): 7189-7196.
[30] [Li Shanjia, Gou Wei, Wang Hui, et al. Characteristics of C, N, P, and their response to soil water and salt in leaves of Lycium ruthenicum in the lower reaches of the Heihe River[J]. Acta Ecologica Sinica, 2019, 39(19): 7189-7196. ]
[31] 张彦军, 郭胜利. 环境因子对土壤微生物呼吸及其温度敏感性变化特征的影响[J]. 环境科学, 2019, 40(3): 1446-1456.
[31] [Zhang Yanjun, Guo Shengli. Effect of environmental factors on variation characteristics of soil microbial respiration and its temperature sensitivity[J]. Environmental Science, 2019, 40(3): 1446-1456. ]
[32] 赵炳梓, 徐富安. 水肥条件对小麦、玉米N、P、K吸收的影响[J]. 植物营养与肥料学报, 2000, 6(3): 260-266.
[32] [Zhao Bingzi, Xu Fuan. N, P, K uptake by winter wheat and maize as influence by different combinations of irrigation water and nitrogen fertilizer[J]. Plant Nutrition and Fertilizer Science, 2000, 6(3): 260-266. ]
[33] 刘莹莹, 苏妮尔, 赵彩鸿, 等. 落叶松凋落叶水提液对苗圃土壤微生物数量和土壤酶活性的影响[J]. 森林工程, 2020, 36(5): 24-33.
[33] [Liu Yingying, Su Nier, Zhao Caihong, et al. Effects of water extracts of Larix chinensis litters on the microbial quantity and enzyme activity of soil in nursery[J]. Forest Engineering, 2020, 36(5): 24-33. ]
[34] Chapin F S. The mineral nutrition of wild plants[J]. Annual Review of Ecology and Systematics, 1980, 11(1): 233-260.
[35] Koerselman W, Meuleman A F M. The vegetation N: P ratio: A new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6): 1441-1450.
[36] Pyankov V I, Kondratchuk A V, Shipley B. Leaf structure and specific leaf mass: The alpine desert plants of the Eastern Pamirs, Tadjikistan[J]. New Phytologist, 1999, 143(1): 131-142.
[37] Leigh A, Sevanto S, Ball M C, et al. Do thick leaves avoid thermal damage in critically low wind speeds?[J]. New Phytologist, 2012, 194(2): 477-487.
[38] 焦亮, 关雪, 刘雪蕊, 等. 内陆河湿地芦苇叶功能性状特征及其对土壤环境因子的响应[J]. 干旱区研究, 2020, 37(1): 202-211.
[38] [Jiao Liang, Guan Xue, Liu Xuerui, et al. Functional traits of Phragmites australis leaves and response to soil environmental factors in inland river wetland[J]. Arid Zone Research, 2020, 37(1): 202-211. ]
[39] Smith W K. Temperatures of desert plants: Another perspective on the adaptability of leaf size[J]. Science, 1978, 201(4356): 614-616.
[40] 赵康宁, 刘丹丹. 植物的耐阴性评价[J]. 南华大学学报 (自然科学版), 2020, 34(3): 51-59.
[40] [Zhao Kangning, Liu Dandan. Assessment of plant shade tolerance[J]. Journal of University of South China (Science and Technology), 2020, 34(3): 51-59. ]
[41] James S A, Bell D T. Influence of light availability on leaf structure and growth of two Eucalyptus globulus ssp. globulus provenances[J]. Tree Physiology, 2000, 20(15): 1007-1018.
[42] 张静, 李素慧, 宋海燕, 等. 模拟喀斯特不同土壤生境下黑麦草对水分胁迫的生长和光合生理响应[J]. 生态学报, 2020, 40(4): 1240-1248.
[42] [Zhang Jing, Li Suhui, Song Haiyan, et al. Growth and photosynthetic physiological responses of Lolium perenne L. to water stress in the simulated karst soil habitats[J]. Acta Ecologica Sinica, 2020, 40(4): 1240-1248. ]
[43] 张曦, 王振南, 陆姣云, 等. 紫花苜蓿叶性状对干旱的阶段性响应[J]. 生态学报, 2016, 36(9): 2669-2676.
[43] [Zhang Xi, Wang Zhennan, Lu Jiaoyun, et al. Responses of leaf traits to drought at different growth stages of alfalfa[J]. Acta Ecologica Sinica, 2015, 36(9): 2669-2676. ]
[44] 曹翠玲, 李生秀, 苗芳. 氮素对植物某些生理生化过程影响的研究进展[J]. 西北农业大学学报, 1999, 27(4): 99-104.
[44] [Cao Cuiling, Li Shengxiu, Miao Fang. The research situation about effects of nitrogen on certain physiological and biochemical process in plants[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 1999, 27(4): 99-104. ]
[45] Han Y, White P J, Cheng L. Mechanisms for improving phosphorus utilization efficiency in plants[J]. Annals of Botany, 2022, 129(3): 247-258.
[46] Han W, Fang J, Guo D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377-385.
[47] 邓成华, 吴龙龙, 张雨婷, 等. 不同林龄油茶人工林土壤-叶片碳氮磷生态化学计量特征. 生态学报, 2019, 39(24): 9152-9161.
[47] [Deng Chenghua, Wu Longlong, Zhang Yuting, et al. The stoichiometry characteristics of soil and plant carbon, nitrogen, and phosphorus in different stand ages in Camellia oleifera plantation[J]. Acta Ecologica Sinica, 2019, 39(24): 9152-9161. ]
[48] Wang J, Chen G, Zou G, et al. Comparative on plant stoichiometry response to agricultural non-point source pollution in different types of ecological ditches[J]. Environmental Science and Pollution Research, 2019, 26(1): 647-658.
[49] 洪江涛, 吴建波, 王小丹. 放牧和围封对藏北高寒草原紫花针茅群落生物量分配及碳、氮、磷储量的影响[J]. 草业科学, 2015, 32(11): 1878-1886.
[49] [Hong Jiangtao, Wu Jianbo, Wang Xiaodan. Effects of grazing and fencing on Stipa purpurea community biomass allocation and carbon, nitrogen and phosphorus pools on the northern Tibet Plateau alpine[J]. Pratacultural Science, 2015, 32(11): 1878-1886. ]
[50] 刘旻霞. 甘南高寒草甸植物元素含量与土壤因子对坡向梯度的响应[J]. 生态学报, 2017, 37(24): 8275-8284.
[50] [Liu Minxia. Response of plant element content and soil factors to the slope gradient of alpine meadows in Gannan[J]. Acta Ecologica Sinica, 2017, 37(24): 8275-8284. ]
[51] 孙一梅, 田青, 吕朋, 等. 极端干旱与氮添加对半干旱沙质草地物种多样性、叶性状和生产力的影响[J]. 干旱区研究, 2020, 37(6): 1569-1579.
[51] [Sun Yimei, Tian Qing, Lyu Peng, et al. Effects of extreme drought and nitrogen addition on species diversity, leaf trait, and productivity in a semiarid sandy grassland[J]. Arid Zone Research, 2020, 37(6): 1569-1579. ]
[52] 王鑫, 杨磊, 赵倩, 等. 黄土高原典型小流域草地群落功能性状对土壤水分的响应[J]. 生态学报, 2020, 40(8): 2691-2697.
[52] [Wang Xin, Yang Lei, Zhao Qian, et al. Response of grassland community functional traits to soil water in a typical the Loess Plateau watershed[J]. Acta Ecologica Sinica, 2020, 40(8): 2691-2697. ]
[53] Terashima I, Miyazawa S I, Hanba Y T. Why are sun leaves thicker than shade leaves?—Consideration based on analyses of CO2 diffusion in the leaf[J]. Journal of Plant Research, 2001, 114(1): 93-105.
[54] Reich P B, Ellsworth D S, Walters M B, et al. Generality of leaf trait relationships: A test across six biomes[J]. Ecology, 1999, 80(6): 1955-1969.
[55] Knops J M H, Reinhart K. Specific leaf area along a nitrogen fertilization gradient[J]. The American Midland Naturalist, 2000, 144(2): 265-272.
[56] Reich P B, Walters M B, Ellsworth D S, et al. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: A test across biomes and functional groups[J]. Oecologia, 1998, 114(4): 471-482.
[57] 金鹰, 王传宽. 植物叶片水力与经济性状权衡关系的研究进展[J]. 植物生态学报, 2015, 39(10): 1021-1032.
[57] [Jin Ying, Wang Chuankuan. Trade-offs between plant leaf hydraulic and economic traits[J]. Chinese Journal of Plant Ecology, 2015, 39(10): 1021-1032. ]
Outlines

/