[1] 王林和, 党宏忠, 张国盛,等. 中国天然臭柏群落的分布与生物量特征[J]. 内蒙古农业大学学报(自然科学版), 2014,35(1):37-45. [Wang Linhe, Dang hongzhong, Zhang Guosheng, et al. Distribution and biomass of natural Juniperus sabina community in China[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2014,35(1):37-45. ]
[2] 张金玲, 程达, 李玉灵,等. 光和水分胁迫对臭柏实生幼苗光化学效率及色素组成的影响[J]. 植物学报, 2017,52(3):278–289. [Zhang Jinling, Cheng Da, Li Yuling, et al. Effect of light and water stress on photochemical efficiency and pigment composition of Sabina vulgaris seedlings[J]. Chinese Bulletin of Botany, 2017,52(3):278–289. ]
[3] 李晨阳, 高慧, 陈燕,等. HPLC测定不同产地新疆圆柏中的槲皮苷[J]. 华西药学杂志, 2015, 30(6): 720-721. [Li Chenyang, Gao Hui, Chen Yan, et al. Determination of quercitrin in Juniperus sabina from the different habitats by HPLC[J]. West China Journal of Pharmaceutical Sciences, 2015, 30(6): 720-721.]
[4] Zhang H, Shi X, Wang L, et al. Antibacterial effect of waste liquor of essence oil extraction from Sabina vulgaris ant in foods[J]. Agricultural Science & Technology, 2016,17(2): 414–416.
[5] 赵媛媛, 丁国栋, 高广磊,等. 毛乌素沙区沙漠化土地防治区划[J]. 中国沙漠, 2017, 37(4): 635-643. [Zhao Yuanyuan, Ding Guodong, Gao Guanglei, et al. Regionalization for aeolian desertification control in the Mu Us sandy land region, China[J]. Journal of Desert Research, 2017, 37(4): 635-643. ]
[6] 红雨. 毛乌素沙地臭柏群落不同演替阶段生理生态学特性的研究[D]. 呼和浩特:内蒙古农业大学, 2006. [Hong Yu. Study on the Ecophysiology of Sabina vulguris Eommunity at the Differernt Successional Stages in Mu Us Sandland[D]. Huhhot: Inner Mongolia Agricultural University, 2006. ]
[7] 赵娜, 古松, 刘龙会,等. 沙地柏(Sabina vulgaris Antoine)的研究进展[J]. 内蒙古农业大学学报(自然科学版), 2010, 31(1):311-318. [Zhao Na, Gu Song, Liu Longhui, et al. Advances in Sabina vulgaris Antoine[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2010, 31(1):311-318. ]
[8] 刘冠志, 李青丰, 贺威,等. 毛乌素沙地3种主要植物群落的阻沙效益[J]. 水土保持通报, 2016, 36(2): 234-238. [Liu Guanzhi, Li Qingfeng, He Wei, et al. Efficiency of sand resistance of three main plant communites Mu Us Sandlan[J]. Bulletin of Soil and Water Conservation, 2016, 36(2): 234-238. ]
[9] 呼格吉勒图. 毛乌素沙地湿地植被特征与生态功能[D]. 呼和浩特:内蒙古大学, 2012. [Hu Gejiletu. Characteristics and Ecological Function of Vegetation of Wetland in Mu Us Sandy Land[D]. Huhhot: Inner Mongolia University, 2012.]
[10] 于洋. 高寒沙地不同林龄乌柳人工防护林固碳功能[D]. 北京:中国林业科学研究院, 2013. [Yu Yang. Carbon Sequestration of the Artificial Shelterbelt Salix cheilophila Plantation with Different Stand Age in High-cold Sandy Land[D]. Beijing: Chinese Academy of Forestry, 2012. ]
[11] 杨雪梅, 杨太保, 刘海猛, 等. 气候变暖背景下近30a北半球植被变化研究综述[J]. 干旱区研究, 2016, 33(2):379-391. [Yang Xuemei, Yang Taibao, Liu Haimeng, et al. Vegetation variation in the north hemisphere under climate warming in the last 30 years[J]. Arid Zone Research,2016, 33(2):379-391.]
[12] 王睿, 周立华, 陈勇,等. 库布齐沙漠机械防沙措施的防护效益[J]. 干旱区研究, 2017,34(2):330-336. [Wang Rui, Zhou Lihua, Chen Yong, et al.Wind-blown sand control effect of sand barriers used in the Hobq Desert[J]. Arid Zone Research,2017,34(2):330-336. ]
[13] 张国盛, 王哲, 王林和, 等. 毛乌素沙地天然臭柏居群有性更新幼苗动态研究[J]. 林业科学, 2006, 42(5): 62-67. [Zhang Guosheng, Wang Zhe, Wang Linhe, et al. Regenerative seedlings dynamics of natural Sabina vulgaris community in Mu Us Sandland[J]. Scientia Silvae Sinicae , 2006, 42(5): 62-67. ]
[14] 张国盛. 毛乌素沙地臭柏生态生理特性及其群落稳定性[D]. 北京:北京林业大学, 2004. [Zhang Guosheng. The Eco-physiological Characteristics and Community Stability of Sabina vulgaris in Mu Us Sandland[D]. Beijing: Beijing Forestry University, 2004. ]
[15] 王林和. 臭柏生理生态学特性及种群恢复与重建[M]. 北京:科学出版社, 2011, 13-20. [Wang Linhe. The Physiological and Ecological Characteristics and Community Restoration and Reconstruction of Sabina vulgaris[M]. Beijing: Science Press, 2011,13-20. ]
[16] 冯玉静. 毛乌素沙地东南缘沉积物光释光测年与环境变迁研究[D]. 兰州:兰州大学, 2015. [Feng Yujing. Luminescence Dating of Sediments from SE Margin of Mu Us Sandy Land and Implications for Environment Change[D]. Lanzhou: Lanzhou University, 2015.]
[17] 徐丹丹, 尹立河, 侯光才,等. 毛乌素沙地旱柳和小叶杨树干液流密度及其与气象因子的关系[J]. 干旱区研究, 2017, 34(2):375-382. [Xu Dandan, Yin Lihe, Hou Guangcai, et al.Relationships between sap flow densities in tree trunks of Salix matsudana and Populus simonii and meteorological factors in the Mu Us Sandland[J], Arid Zone Research, 2017, 34(2):375-382. ]
[18] 秦艳. 毛乌素沙地臭柏、油蒿细根的生产与周转[D]. 呼和浩特:内蒙古农业大学, 2008. [Qin Yan. Fine Root Rroduction and Rurnover of Sabina vulgaris and Artemisia ordosica in Mu Us Sandland[D]. Huhhot: Inner Mongolia Agricultural University, 2008. ]
[19] 黄秋娴, 赵顺, 刘春梅,等. 遮荫处理对铁尾矿基质臭柏实生苗快速叶绿素荧光特性的影响[J]. 林业科学, 2015, 51(6):17-26. [Huang Qiuxian, Zhao Shun, Liu Chunmei, et al. Effects of shading treatments on chlorophyll fluorescence characteristics of Sabina vulgaris seedlings grown in iron tailings media[J]. Scientia Silvae Sinicae , 2015, 51(6):17-26. ]
[20] 赵秀莲. 不同年龄沙地柏抗旱生理特性的差异研究[D]. 北京:中国林业科学研究院, 2007. [Zhao Xiulian. Age-based Variation of Drought-resistance for Juniperus sabina[D]. Beijing: Chinese Academy of Forestry, 2007. ]
[21] 郭秀艳. 臭柏、油松精油的提取与抑菌活性[D]. 呼和浩特:内蒙古农业大学, 2009. [Guo Xiuyan. The extraction and antibacterial affect of Sabina ulgaris Ant. and Pinus tabulaeformis Carr.[D]. Huhhot: Inner Mongolia Agricultural University, 2009. ]
[22] 李玉灵, 朱帆, 王俊刚,等. 水分胁迫下臭柏(Sabina vulgaris Ant.)光合特性和色素组成的季节变化[J]. 生态学报, 2009, 29(8):4346-4352. [Li Yuling,Zhu Fan, Wang Jungang, et al. Seasonal changes of photosynthetic characteristics and pigment composition of Sabina vulgaris Ant. under water stress[J].Acta Ecologica sinica,2009, 29(8):4346-4352. ]
[23] 刘建锋, 赵秀莲, 江泽平. 不同年龄沙地柏生理生态特性差异研究[J]. 西北林学院学报, 2011, 26(3): 17-20. [Liu Jianfeng, Zhao Xiulian, Jiang Zeping. Comparison on several physiological characteristics in Sabina vulgaris seedlings of different ages[J]. Journal of Northwest Forestry University,2011, 26(3): 17-20. ]
[24] 赵顺, 黄秋娴, 李玉灵,等. 遮荫处理对臭柏幼苗光合特性的影响[J]. 生态学报, 2014, 34(8): 1994-2002. [Zhao Shun, Huang Qiuxian, Li Yuling, et al. Effects of shading treatments on photosynthetic characteristics of Juniperus sabina Ant. seedlings[J]. Acta Ecologica sinica, 2014, 34(8): 1994-2002.]
[25] Ishii Y, Sakamoto K, Yamanaka N, et al. Light acclimation of needle pigment composition in Sabina vulgaris seedlings under nurse plant canopy[J]. Journal of Arid Environments, 2006, 67 (3): 403-415.
[26] 许大全. 光合作用学[M]. 北京:科学出版社, 2013, 187-200. [Xu Daquan.Photosynthology [M]. Beijing: Science Press, 2013, 187-200. ]
[27] 张有福, 陈春艳, 陈拓,等. 2种圆柏属植物叶绿素荧光对季节变化的响应特征[J]. 植物研究, 2010, 30(3): 289-293. [Zhang Youfu, Chen Chunyan, Chen Tuo, et al. Chlorophy II fluorescence characteristics in response to seasonal variations in two Sabina trees[J]. Bulletin of Botanical Research, 2010,30(3): 289-293. ]
[28] 许大全. 植物光胁迫研究中的几个问题[J]. 植物生理学通讯, 2003, 39(5), 493-495. [Xu Daquan. Several problems in the research of plant light stress[J]. Plant Physiology Communications, 2003, 39(5), 493-495. ]
[29] Larcher W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups[M]. New York:Springer Science & Business Media, 2003.
[30] 颉敏华, 张继澍, 郁继华,等. D1蛋白周转和叶黄素循环在青花菜叶片强光破坏防御中的作用[J]. 中国农业科学, 2009, 42(5):1582-1589. [Jie Minhua, Zhang Jishu, Yu Jihua, et al. The role of D1 protein turnover and xanthophylls cycle in protecting photosynthetic apparatus of Broccoli leaves against photodamage[J]. Scientia Agricultura Sinica, 2009, 42(5):1582-1589. ]
[31] Umena Y, Kawakami K, Shen J R, et al. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å[J]. Nature, 2011, 473(7345):55.[32] 许大全, 张玉忠, 张荣铣. 植物光合作用的光抑制[J]. 植物生理学通讯, 1992,28(4):237-243. [Xu Daquan, Zhang Yuzhong, Zhang Rongxian. Photoinhibition of photosynthesis plants[J]. Plant Physiology Communications, 1992,28(4):237-243. ]
[33] 周振翔, 李志康, 陈颖,等. 叶绿素含量降低对水稻叶片光抑制与光合电子传递的影响[J]. 中国农业科学, 2016, 49(19):3709-3720. [Zhou Zhenxiang, Li Zhikang, Chen Ying, et al. Effects of reduced chlorophyll content on photoinhibition and photosynthetic electron transport in rice leaves[J]. Scientia Agricultura Sinica, 2016, 49(19):3709-3720. ]
[34] Blankenship R E, Chen M. Spectral expansion and antenna reduction can enhance photosynthesis for energy production[J]. Current opinion in chemical biology, 2013, 17(3): 457-461.
[35] 代欣, 胡举伟, 张秀丽,等. 植物光合机构对光环境的适应机制:状态转换[J]. 应用生态学报, 2016, 27(5):1674-1682. [Dai Xin, Hu Juwei, Zhang Xiuli, et al. Adaptive mechanism of photosynthetic apparatus of plants to light environment: State transition[J]. Chinese Journal of Applied Ecology, 2016, 27(5):1674-1682. ]
[36] 付忠, 谢世清, 徐文果,等. 不同光照强度下谢君魔芋的光合作用及能量分配特征[J]. 应用生态学报, 2016, 27(4):1177-1188. [Fu zhong, Xie Shiqing, Xu Wenguo, et al. Characteristics of photosynthesis and light energy partitioning in Amorphophallus xiei grown along a light-intensity gradient[J]. Chinese Journal of Applied Ecology, 2016, 27(4):1177-1188. ]
[37] 高杰, 张仁和, 王文斌,等. 干旱胁迫对玉米苗期叶片光系统Ⅱ性能的影响[J]. 应用生态学报, 2015, 26(5):1391-1396. [Gao Jie, Zhang Renhe, Wang Wenbin, et al. Effects of drought stress on performance of photosystem Ⅱ in maize seedling stage[J]. Chinese Journal of Applied Ecology, 2015, 26(5):1391-1396. ]
[38] Hager A, Holocher K. Localization of the xanthophyll-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease[J]. Planta, 1994, 192(4): 581-589.
[39] Qin X, Suga M, Kuang T, et al. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex[J]. Science, 2015, 348(6238): 989-995.
[40] Shen J R. The structure of photosystem II and the mechanism of water oxidation in photosynthesis[J]. Annual Review of Plant Biology, 2015, 66: 23-48.
[41] 郭春爱. 低叶绿素b对水稻光合机构及其热稳定性的影响[D]. 南京:南京农业大学, 2007. [Guo Chun’ai. Effects of Low Content Chlorophyll b on Photosynthetic Apparatus and Thermostability in Rice[D]. Nanjing: Nanjing Agricultural University, 2007. ]
[42] 郭春爱, 刘芳, 许晓明. 叶绿素b缺失与植物的光合作用[J]. 植物生理学通讯, 2006, 42(5): 967-973. [Guo Chun’ai, Liu Fang, Xu Xiaoming.Chlorophyll-b deficient and photosynthesis in plants[J]. Plant Physiology Communications, 2006, 42(5): 967-973. ]
[43] Croce R. A close view of photosystem I[J]. Science, 2015, 348(6238):970-971.
[44] 陈新斌. 海水胁迫下菠菜叶片叶黄素循环调控叶绿素代谢的机理研究[D]. 南京:南京农业大学,2013. [Chen Xinbin. The Mechanism of Xanthophyll Cycle Regulation on Chlorophyll Metabolism of Spinach Leaves under Seawater Stress[D]. Nanjing: Nanjing Agricultural University, 2013. ]
[45] 吴甘霖,羊礼敏,段仁燕,等. 遮荫对大别山五针松幼苗光合色素和光合作用的影响[J]. 安庆师范学院学报(自然科学版), 2016, 22(3): 106-110. [Wu Ganlin, Yang Limin, Duan renyan, et al. Shading on the Photosynthetic Physiological Characteristics and Photosynthetic Pigments of Pinus dabeshanesis Seedlings[J]. Journal of Anqing Teachers College( Natural Science Edition), 2016, 22(3): 106-110. ]
[46] 谢红英,郭春晓,田素波,等. 温光交叉胁迫对日本红枫叶片叶绿素荧光和叶黄素循环的影响[J]. 山东农业科学,2017,5:14-17. [Xie Hongying, Guo Chunxiao, Tian Subo, et al. Effects of intercross stress by temperature and light on chlorophyll fluorescence and xanthophyll cycle in Acer palmatum atropurpureum Leaves[J]. Shandong Agricultural Sciences, 2017,5:14-17,36. ]
[47] 田艳春. 不同遮荫时间对萝卜幼苗生长及叶绿素含量的影响[J]. 赤峰学院学报(自然科学版), 2016, 32(11): 14-16. [Tian Yanchun. Effects of different shading time on radish seedling growth and chlorophyll content[J]. Journal of Chifeng College( Natural Science Edition), 2016, 32(11): 14-16. ]
[48] van Amerongen H, Croce R. Light harvesting in photosystem II[J]. Photosynthesis Research, 2013, 116(2/3): 251-263.
[49] 陶宗娅, 邹琦. 植物光合作用光抑制分子机理及其光保护机制[J]. 西南农业学报, 1999, 12(s2):9-18. [Tao Zongya, Zou Qi. Molecular mechanisms of photodamage and protective mechanism against photoinhibition and photodamage in photosynthetic apparatus of higher plant[J]. Southwest China Journal of Agricultural Sciences, 1999, 12(Suppl.2):9-18. ]
[50] 贾虎森, 韩亚琴. 高等植物光合作用的光抑制研究进展[J]. 植物学通报, 2000, 17(3):218-224. [Jia Husen, Han Yaqin. Advances in studies on photoinhibition in photosynthesis of higher plants[J].Chinese Bulletin of Botany, 2000, 17(3):218-224. ]
[51] 王强, 温晓刚, 张其德. 光合作用光抑制的研究进展[J]. 植物学通报, 2003, 20(5):539-548. [Wang Qiang, Wen Xiaogang, Zhang Qide. Progress in studies on photoinhibition[J]. Chinese Bulletin of Botany, 2003, 20(5):539-548. ]
[52] 孙艳,徐伟君,范爱丽. 高温强光下水杨酸对黄瓜叶片叶绿素荧光和叶黄素循环的影响[J]. 应用生态学报, 2006, 17(3):399-402. [Sun Yan, Xu Weijun, Fan Aili. Effects of salicylic acid on chlorophyll fluorescence and xanthophyll cycle in cucumber leaves under high temperature and strong light[J]. Chinese Journal of Applied Ecology, 2006, 17(3):399-402. ]
[53] Müller P, Li X P, Niyogi K K. Non-photochemical quenching. A response to excess light energy[J]. Plant Physiology, 2001, 125(4):1558-1566.
[54] Gilmore A M. Xanthophyll cycle-dependent nonphotochemical quenching in photosystem II: Mechanistic insights gained from Arabidopsis thaliana L. mutants that lack violaxanthin deepoxidase activity and/or lutein[J]. Photosynthesis Research, 2001, 67(1/2): 89-101.
[55] Leipner J, Stamp P, Fracheboud Y. Artificially increased ascorbate content affects zeaxanthin formation but not thermal energy dissipation or degradation of antioxidants during cold-induced photooxidative stress in maize leaves[J]. Planta, 2000, 210(6): 964-969.
[56] Xu C C, Kuang T, Li L, et al. D1 protein turnover and carotene synthesis in relation to zeaxanthin epoxidation in rice leaves during recovery from low temperature photoinhibition[J]. Functional Plant Biology, 2000, 27(3): 239-244.
[57] 赵顺. 遮荫处理对臭柏实生苗光合特性和快速叶绿素荧光特征的影响[D]. 保定:河北农业大学, 2014. [Zhao Shun. Effects of Shading Rreatments on Photosynthetic Characteristics and Chlorophyll a Fluorescence Transient of Sabina vulgaris Seedlings[D]. Baoding: Agricultural University of Hebei,2014. ]
[58] 张会慧, 张秀丽, 李鑫, 等. 盐胁迫下桑树叶片D1蛋白周转和叶黄素循环对PSⅡ的影响[J].林业科学, 2013, 49(1):99-106. [Zhang Huihui, Zhang Xiuli, Li Xin, et al. Role of D1 protein turnover and xanthophylls cycle in protecting of photosystem Ⅱ functions in leaves of Morus alba under NaCl stress[J]. Scientia Silvae Sinicae, 2013, 49(1):99-106. ]
[59] Büchel C. Evolution and function of light harvesting proteins[J]. Journal of plant physiology, 2015, 172: 62-75.
[60] 王芳, 杨莎, 郭峰,等. 钙对花生幼苗生长、活性氧积累和光抑制程度的影响[J]. 生态学报, 2015, 35(5): 1496-1504. [Wang Fang, Yang Sha, Guo Feng, et al. Effects of calcium on peanut ( Arachis Hypogaea L.) seedling growth,accumulation of reactive oxygen species and photoinhibition[J]. Acta Ecologica sinica, 2015, 35(05): 1496-1504.]
[61] Asada K.Production and scavenging of reactive oxygen species in chloroplasts and their functions[J]. Plant Physiology,2006,141(2) : 391-396.
[62] Nishiyama Y,Allakhverdiev S I,Murata N. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II [J] Biochimicaet Biophysica Acta ( BBA) - Bioenergetics,2006,1 757(7) : 742-749.
[63] 秦立琴, 张悦丽, 郭峰,等. 强光下高温与干旱胁迫对花生光系统的伤害机制[J]. 生态学报, 2011, 31(7): 1835-1843. [Qin Liqin, Zhang Yueli, Guo Feng, et al. Damaging mechanisms of peanut ( Arachis hypogaea L.) photosystems caused by high-temperature and drought under high irradiance[J]. Acta Ecologica sinica, 2011, 31(7): 1835-1843. ]
[64] 郭玉朋. 植物光呼吸途径研究进展[J]. 草业学报,2014,23(4):322-329. [Guo Yupeng. A study on advances in plant photorespiration[J]. Acta Prataculturae Sinica, 2014,23(4):322-329.]
[65] Kozaki A, Takeba G. Photorespiration protects C3 plants from photooxidation[J]. Nature, 1996, 384(6609):557-560.
[66] 郭连旺, 许大全, 沈允钢. 棉花叶片光合作用的光抑制和光呼吸的关系[J]. 科学通报, 1995, 40(20): 1885-1888. [Guo Lianwang, Xu Daquan, Shen Yungang. Relationship between photoinhibition of photosynthesis and photorespiration in leaves of cotton[J]. Chinese Science Bulletin, 1995, 40(20): 1885-1888. ] |