Arid Zone Research ›› 2023, Vol. 40 ›› Issue (9): 1425-1437.doi: 10.13866/j.azr.2023.09.06
• Land and Water Resources • Previous Articles Next Articles
KANG Wenhui1,2,3(),ZHOU Yinzhu4,SUN Ying1,2,3,ZHOU Jinlong1,2,3(),CAO Yueting4,LU Han1,2,3,TU Zhi1,2,3
Received:
2023-03-27
Revised:
2023-06-15
Online:
2023-09-15
Published:
2023-09-28
Contact:
Jinlong ZHOU
E-mail:1754243549@qq.com;zjzhoujl@163.com
KANG Wenhui,ZHOU Yinzhu,SUN Ying,ZHOU Jinlong,CAO Yueting,LU Han,TU Zhi. Distribution and coenrichment of arsenic and fluorine in the groundwater of the Manas River Basin in Xinjiang[J].Arid Zone Research, 2023, 40(9): 1425-1437.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Statistics of groundwater hydrochemical indexes"
指标 | 单一结构潜水(n=3) | 承压水区潜水(n=4) | 承压水(n=28) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
均值 | 最小值 | 最大值 | 均值 | 最小值 | 最大值 | 均值 | 最小值 | 最大值 | |||
pH | 7.86 | 7.36 | 8.28 | 7.87 | 7.77 | 7.97 | 8.71 | 8.11 | 9.09 | ||
K++Na+ | 65.12 | 24.60 | 100.36 | 478.64 | 24.47 | 1565.54 | 168.87 | 36.42 | 843.83 | ||
Ca2+ | 54.42 | 31.30 | 88.20 | 126.13 | 34.52 | 277.50 | 27.55 | 3.20 | 290.70 | ||
Mg2+ | 8.67 | 5.60 | 14.60 | 134.61 | 4.14 | 397.60 | 11.70 | 0.49 | 152.00 | ||
Cl- | 42.39 | 14.18 | 70.00 | 453.82 | 21.00 | 1092.00 | 135.22 | 14.18 | 1178.00 | ||
SO42- | 110.81 | 57.43 | 206.00 | 981.14 | 31.55 | 3143.00 | 161.46 | 15.30 | 1488.00 | ||
HCO3- | 178.29 | 109.88 | 264.00 | 323.57 | 120.00 | 895.00 | 151.76 | 95.23 | 615.00 | ||
TDS | 376.28 | 215.85 | 612.00 | 2339.55 | 195.00 | 6803.00 | 591.63 | 174.49 | 4020.00 | ||
EC | 568.33 | 265.00 | 959.00 | 3226.25 | 311.00 | 8804.00 | 887.43 | 228.00 | 5845.00 | ||
DO | 0.84 | 0.22 | 1.42 | 0.79 | 0.06 | 1.37 | 0.46 | 0.01 | 1.27 | ||
Eh | -44.43 | -51.60 | -36.60 | -40.90 | -60.90 | -30.30 | -96.79 | -125.10 | 81.20 | ||
As | 1.27 | 1.13 | 1.38 | 2.80 | 1.13 | 4.00 | 18.95 | 1.81 | 41.35 | ||
F | 0.21 | 0.06 | 0.28 | 0.57 | 0.26 | 1.41 | 1.92 | 0.44 | 8.02 |
Tab. 2
Statistics of arsenic and fluorine mass concentration in unconfined groundwater and confined groundwater"
指标 | 含水层类型 | N | 最小值 | 最大值 | 均值 | 超标个数 | 超标率/% |
---|---|---|---|---|---|---|---|
砷As | 单一结构潜水 | 3 | 1.13 | 1.38 | 1.27 | 0 | 0.0 |
承压水区潜水 | 4 | 1.13 | 4.00 | 2.80 | 0 | 0.0 | |
承压水 | 28 | 1.81 | 41.35 | 18.95 | 22 | 78.6 | |
氟F | 单一结构潜水 | 3 | 0.06 | 0.28 | 0.21 | 0 | 0.0 |
承压水区潜水 | 4 | 0.26 | 1.41 | 0.57 | 1 | 25.0 | |
承压水 | 28 | 0.44 | 8.02 | 1.92 | 15 | 53.6 |
[1] |
Podgorski J, Berg M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-850.
doi: 10.1126/science.aba1510 pmid: 32439786 |
[2] |
Podgorski J, Berg M. Global analysis and prediction of fluoride in groundwater[J]. Nature Communications, 2022, 13: 4232. https://doi.org/10.1038/s41467-022-31940-x.
doi: 10.1038/s41467-022-31940-x pmid: 35915064 |
[3] | 高存荣, 刘文波, 冯翠娥, 等. 干旱、半干旱地区高砷地下水形成机理研究: 以中国内蒙古河套平原为例[J]. 地学前缘, 2014, 21(4): 13-29. |
[Gao Cunrong, Liu Wenbo, Feng Cui’e, et al. Research on the formation mechanism of high arsenic groundwater in arid and semi-arid regions: A case study of Hetao Plain in Inner Mongolia, China[J]. Earth Science Frontiers, 2014, 21(4): 13-29.] | |
[4] |
Xie X J, Wang Y X, Ellis A, et al. The sources of geogenic arsenic in aquifers at Datong Basin, northern China: Constraints from isotopic and geochemical data[J]. Journal of Geochemical Exploration, 2011, 110(2): 155-166.
doi: 10.1016/j.gexplo.2011.05.006 |
[5] | Xie X J, Wang Y X, Su C L, et al. Influence of irrigation practices on arsenic mobilization: Evidence from isotope composition and Cl/Br ratios in groundwater from Datong Basin, northern China[J]. Journal of Hydrology, 2012, 424: 37-47. |
[6] | 郭华明, 郭琦, 贾永锋, 等. 中国不同区域高砷地下水化学特征及形成过程[J]. 地球科学与环境学报, 2013, 35(3): 83-96. |
[Guo Huaming, Guo Qi, Jia Yongfeng, et al. Chemical characteristics and geochemical processes of high arsenic groundwater in different regions of China[J]. Journal of Earth Sciences and Environment, 2013, 35(3): 83-96.] | |
[7] |
郭华明, 杨素珍, 沈照理. 富砷地下水研究进展[J]. 地球科学进展, 2007, 22(11): 1109-1117.
doi: 10.11867/j.issn.1001-8166.2007.11.1109 |
[Gao Huaming, Yang Suzhen, Shen Zhaoli. High arsenic groundwater in the World: Overview and research perspectives[J]. Advances in Earth Science, 2007, 22(11): 1109-1117.]
doi: 10.11867/j.issn.1001-8166.2007.11.1109 |
|
[8] | Fordyce F M. Fluorine: Human health risks[J]. Encyclopedia of Environmental Health, 2011, 2: 776-785. |
[9] | 栾风娇. 新疆南部典型区地下水中氟的分布特征及富集因素研究[D]. 乌鲁木齐: 新疆农业大学, 2017. |
[Luan Fengjiao. Distribution Characteristics and Enrichment Factors of Fluoride in Groundwater in Typical Areas of Southern Xinjiang[D]. Urumqi: Xinjiang Agricultural University, 2017.] | |
[10] |
王根绪, 程国栋. 西北干旱区水中氟的分布规律及环境特征[J]. 地理科学, 2000, 20(2): 153-159.
doi: 10.13249/j.cnki.sgs.2000.02.153 |
[Wang Genxu, Cheng Guodong. The distributing regularity of fluorine and its environmental characteristics in arid area of Northwest China[J]. Scientia Geographica Sinica, 2000, 20(2): 153-159.]
doi: 10.13249/j.cnki.sgs.2000.02.153 |
|
[11] | 范薇. 塔里木盆地南缘高氟高砷地下水形成机理与处理技术研究——以和田地区绿洲带为例[D]. 乌鲁木齐: 新疆农业大学, 2020. |
[Fan Wei. Formation Mechanism and Treatment Technology of High Fluoride and High Arsenic Groundwater in the South Margin of Tarim Basin: A Case Study of Oasis Belt in Hotan Area[D]. Urumqi: Xinjiang Agricultural University, 2020.] | |
[12] |
孙英, 周金龙, 杨方源, 等. 塔里木盆地南缘绿洲带地下水砷氟碘分布及共富集成因[J]. 地学前缘, 2022, 29(3): 99-114.
doi: 10.13745/j.esf.sf.2022.1.33 |
[Sun Ying, Zhou Jinlong, Yang Fangyuan, et al. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin[J]. Earth Science Frontiers, 2022, 29(3): 99-114.]
doi: 10.13745/j.esf.sf.2022.1.33 |
|
[13] | 雷米, 周金龙, 周殷竹, 等. 天山北麓中段绿洲带高砷地下水中砷的迁移转化规律[J/OL]. 地球科学: 1-18. http://kns.cnki.net/kcms/detail/42.1874.P.20220923.1123.010.html. |
[Lei Mi, Zhou Jinlong, Zhou Yinzhu, et al. Migration and transformation mechanism of high arsenic groundwater in oasis belt in the middle part of northern piedmont of Tianshan mountain[J/OL]. Earth Science: 1-18.http://kns.cnki.net/kcms/detail/42.1874.P.20220923.1123.010.html. ] | |
[14] |
Zhou Y Z, Tu Z, Zhou J L, et al. Distribution, dynamic and influence factors of groundwater arsenic in the Manas River Basin in Xinjiang, PR. China[J]. Applied Geochemistry, 2022, 146: 105441.
doi: 10.1016/j.apgeochem.2022.105441 |
[15] | 程维明, 包安明, 柴慧霞, 等. 新疆地貌格局及其效应[M]. 北京: 科学出版社, 2018. |
[Cheng Weiming, Bao Anming, Chai Huixia, et al. Geomorphological Patterns and Effects in Xinjiang[M]. Beijing: Science Press, 2018.] | |
[16] | 赵宝峰. 干旱区水资源特征及其合理开发模式研究—以玛纳斯河流域为例[D]. 西安: 长安大学, 2010. |
[Zhao Baofeng. Research on Water Resources Characteristics and its Rational Development Pattern for Arid Areas: A case of Manas River Basin[D]. Xi’an: Chang’an University, 2010.] | |
[17] | 王建军. 干旱内陆盆地地下水流模式与典型系统数值模拟[D]. 武汉: 中国地质大学, 2020. |
[Wang Jianjun. Groundwater Flow Patterns and Numerical Simulation of Typical System in an Arid Inland Basin, Northwest China[D]. Wuhan: China University of Geosciences, 2020.] | |
[18] | 刘志明, 王贵玲, 刘少玉, 等. 玛纳斯河流域平原区地下水化学和同位素分析[J]. 勘察科学技术, 2010, 16(2): 18-23. |
[Liu Zhiming, Wang Guiling, Liu Shaoyu, et al. Analysis on hydrochemistry and isotopic compositions of groundwater in the plain of Manas River Basin[J]. Site Investigation Science and Technology, 2010, 16(2): 18-23.] | |
[19] | 李政葵, 董少刚, 张涛, 等. 内蒙古托克托县地区浅层地下水氟化物与土壤水溶性氟的相关性研究[J]. 干旱区研究, 2019, 36(6): 1351-1358. |
[Li Zhengkui, Dong Shaogang, Zhang Tao, et al. Correlation between fluoride in shallow groundwater and water-soluble fluoride in soil in Togtoh County, Inner Mongolia[J]. Arid Zone Research, 2019, 36(6): 1351-1358.] | |
[20] | 侯珺. 石河子地区地下水水质演化与微量无机组分形成机理研究[D]. 乌鲁木齐: 新疆农业大学, 2018. |
[Hou Jun. Research of Evolution of Groundwater Quality and Occurrence Mechanism of Trace Inorganic Components in Shihezi Area[D]. Urumqi: Xinjiang Agricultural University, 2018.] | |
[21] | 栾风娇, 周殷竹, 周金龙, 等. 新疆石河子地区地下水氟分布及富集因素分析[J]. 人民黄河, 2016, 38(3): 64-67, 71. |
[Luan Fengjiao, Zhou Yinzhu, Zhou Jinlong, et al. Distribution characteristics and enrichment factors of groundwater fluorine in Shihezi Area of Xinjiang[J]. Yellow River, 2016, 38(3): 64-67, 71.] | |
[22] | 马媛媛. 玛河流域城市土壤重金属污染状况及风险评价[D]. 石河子: 石河子大学, 2016. |
[Ma Yuanyuan. Heavy Metal Pollution Characteristics in the Manasi River Basins[D]. Shihezi: Shihezi University, 2016.] | |
[23] |
Amiri V, Sohrabi N, Dadgar M A. Evaluation of groundwater chemistry and its suitability for drinking and agricultural uses in the Lenjanat plain, central Iran[J]. Environmental Earth Sciences, 2015, 74(7): 6163-6176.
doi: 10.1007/s12665-015-4638-6 |
[24] | 孙一博. 渭河流域地下水中氟和碘的形成机理及其对人体健康的影响[D]. 西安: 长安大学, 2014. |
[Sun Yibo. Formation Mechanism and Human Health Influence of Fluorine and Iodine of Groundwater in Wei River Basin[D]. Xi’an: Chang’an University, 2014.] | |
[25] | 王刚. 郑州市北郊水源地高砷地下水的分布与形成机理初步研究[D]. 青岛: 青岛理工大学, 2011. |
[Wang Gang. Preliminary Research on Spatial Distribution and Formation of High as Groundwater in Northern Suburb Groundwater source Field, Zhengzhou[D]. Qingdao: Qingdao Technological University, 2011.] | |
[26] | 赵阿宁, 范鹏康, 朱桦, 等. 陕西省大荔县地下水中氟的含量特征及其影响因素分析[J]. 西北地质, 2009, 42(3): 102-108. |
[Zhao A’ning, Fan Pengkang, Zhu Hua, et al. Analysis of the content of fluorin and its effect fators on ground water in Dali County, Shannxi Province[J]. Northwestern Geology, 2009, 42(3): 102-108.] | |
[27] |
Wang G X, Cheng G D. Fluoride distribution in water and the governing factors of environment in arid North-west China[J]. Journal of Arid Environments, 2001, 49(3): 601-614.
doi: 10.1006/jare.2001.0810 |
[28] |
He X D, Li P Y, Wu J H, et al. Poor groundwater quality and high potential health risks in the Datong Basin, northern China: Research from published data[J]. Environmental Geochemistry and Health, 2021, 43(2): 791-812.
doi: 10.1007/s10653-020-00520-7 |
[29] | 时雯雯, 周金龙, 曾妍妍, 等. 和田地区地下水中氟的分布特征及形成过程[J]. 干旱区研究, 2022, 39(1): 155-164. |
[Shi Wenwen, Zhou Jinlong, Zeng Yanyan, et al. Distribution characteristics and formation of fluorine in groundwater in Hotan Prefecture[J]. Arid Zone Research, 2022, 39(1): 155-164.] |
[1] | SHAO Jie, YANG Xinjie, CHEN Xiqing, TENG Chao, YI Jinjun, DONG Meiling, ZHANG Zechen, CAO Jun, ZHU Ning, XIAO Deng, SUN Siyuan, LYU Fei. Hydrochemical characteristics and control factors of surface water in the Yigong Lake Basin, Tibet [J]. Arid Zone Research, 2024, 41(2): 250-260. |
[2] | GUO Quanen,CAO Shiyu,NAN Lili,ZHAN Zongbing,WANG Zhuo,WANG Kun,LI Jingfeng. Effects of nickel, copper, and arsenic pollution on soil microorganism and enzyme activities [J]. Arid Zone Research, 2022, 39(5): 1607-1617. |
[3] | SHI Wenwen,ZHOU Jinlong,ZENG Yanyan,SUN Ying. Distribution characteristics and formation of fluorinein groundwater in Hotan Prefecture [J]. Arid Zone Research, 2022, 39(1): 155-164. |
[4] | LI Zheng-kui, DONG Shao-gang, ZHANG Tao, WANG Chao, LIU Xiao-bo. Correlation between Fluoride in Shallow Groundwater and Water-Soluble Fluoride in Soil in Togtoh County, Inner Mongolia [J]. Arid Zone Research, 2019, 36(6): 1351-1358. |
[5] |
HUANG Li, XU Li-ping.
Spatiotemporal Evolution of the Oasis and Change of Landscape Pattern in the Manas River Basin [J]. Arid Zone Research, 2019, 36(5): 1261-1269. |
[6] | HE Ke, WU Shi-xin,ZHOU Hong-fei,YANG Zhong-hui,YANG Yi. The Study of Two Typical Land Use Model in Manas River Basin [J]. , 2018, 35(4): 954-962. |
[7] | JI Li-Li-?A-Bu-Du-Wai-Li, A Yi-Gu-Li-?Mai-Mai-Ti, TANG Yang. Soil Salinization in the Manas River Basin in Spring [J]. , 2013, 30(2): 189-195. |
[8] | SHI Ce, FAN Wen-Bo, ZHU Hong-Kai, WANG Jiu-Long. Effects of Different Irrigation Volumes on Water Consumption and Growth of Elaeagnus oxycarpa [J]. , 2012, 29(4): 635-640. |
[9] | LING Hong-Bo, XU Hai-Liang, ZHANG Qing-Qing. Trend of Sandstorm in the Manas River Basin Oasis and Its Correlation with Climatic Factors [J]. , 2011, 28(6): 928-935. |
[10] | TANG Yang, Jilili Abuduwaili, LIU Dong-wei, Mireban Abulimiti. Spatial Variability of Soil Moisture Content Based on Microrelief and Land Cover——A Case Study in Oasis in the Manas River Basin [J]. , 2011, 28(2): 222-228. |
|