Arid Zone Research ›› 2023, Vol. 40 ›› Issue (7): 1117-1130.doi: 10.13866/j.azr.2023.07.09

• Land and Water Resources • Previous Articles     Next Articles

Changes, influencing factors and sensitivity of water use efficiency in maize farmland ecosystems based on evapotranspiration separation in the Ningxia irrigated area

ZHUANG Haoran1(),FENG Kepeng1,2,3(),XU Dehao1   

  1. 1. School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
    2. Engineering Research Center for Efficient Utilization of Modern Agricultural Water Resources in Arid Areas, Ministry of Education, Yinchuan 750021, Ningxia, China
    3. Ningxia Engineering Research Center for Water-saving Irrigation and Water Resources Control, Yinchuan 750021, Ningxia, China
  • Received:2023-03-08 Revised:2023-05-17 Online:2023-07-15 Published:2023-08-01

Abstract:

Water use efficiency (WUE) is an important indicator of the carbon-water cycle of farmland ecosystems and is of great significance for guiding agricultural irrigation and improving water productivity. Ningxia Irrigation area is a large-scale irrigation district located in the arid climate zone of China, where the corn planting area is the largest. Based on eddy flux observation of actual evapotranspiration (ET) of farmland ecosystems, this paper used the hydrogen and oxygen stable isotope method to segment evapotranspiration and estimated the total primary productivity (GPP) of typical maize farmland ecosystems in the Yellow River irrigation area of Ningxia using the LUE (Light Use Efficiency) model. Population Water Use Efficiency WUET = GPP/T, Ecosystem Water Use Efficiency WUEET = GPP/T, and Intrinsic Water Use Efficiency IWUEVPD = (GPP·VPD)/ET were calculated. Then, the relationship between different WUE and environmental factors, such as air temperature, saturated water vapor pressure difference, CO2 concentration, effective photosynthetic radiation, and soil water content was analyzed from three aspects: functional response relationship, correlation, and sensitivity. The result showed that the variation of actual evapotranspiration in the growing season of the maize agro-ecosystem in the Ningxia yellow irrigation area was single-humped, and the trends of crop transpiration and actual evapotranspiration were consistent. The variation of water use efficiency in the growing season was different among the three species, with WUET showing a “W-shaped” variation pattern during the growing season while WUEET and IWUEVPD showed a “single-hump” variation pattern. All three WUE peaks occurred at the male tasseling stage, reaching (5.90 kg C·m-3·H2O, 5.02 kg C·m-3·H2O, 32.9 kg C·hPa·m-3·H2O) respectively. The three kinds of water use efficiency began to decrease in the late filing period, and WUET increased slightly in the late ripening period due to weak transpiration. Among the five environmental factors, WUET, WUEET and IWUEVPD were positively correlated with soil water content, and the correlation and sensitivity were the strongest. The three water use efficiencies were significantly negatively correlated with VPD, with the second strongest correlation and sensitivity. Air temperature, photosynthetically active radiation, and CO2 concentration were negatively correlated with the three kinds of WUE but not critical factors. Therefore, soil moisture and VPD are the key factors affecting the WUE of the maize farmland ecosystem in the Yellow River irrigation area of Ningxia.

Key words: stable isotopes of hydrogen and oxygen, evapotranspiration separation, light use efficiency model, gross primary productivity, crop transpiration