Arid Zone Research ›› 2023, Vol. 40 ›› Issue (5): 808-817.doi: 10.13866/j.azr.2023.05.13
• Ecology and Environment • Previous Articles Next Articles
Xu Yuzhe1,2(),Lin Tao3,Li Jun1,2,4()
Received:
2022-12-08
Revised:
2023-01-10
Online:
2023-05-15
Published:
2023-05-30
Xu Yuzhe, Lin Tao, Li Jun. Spatial and temporal patterns of ecological resilience under alternative stable states in the desert of the north Fukang region[J].Arid Zone Research, 2023, 40(5): 808-817.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.1
Correlation between resilience and precipitation"
Spearman相关系数 | 整体 | 南部 | 中部 | 北部 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
同期降水 | 前期降水 | 同期降水 | 前期降水 | 同期降水 | 前期降水 | 同期降水 | 前期降水 | |||||
t1 | 弹性+ | -0.279 *** | - | 0.107 | - | -0.049 | - | -0.464*** | - | |||
弹性- | -0.071 | - | 0.596*** | - | -0.511*** | - | -0.409*** | - | ||||
t2 | 弹性+ | 0.604 *** | 0.592 *** | 0.741*** | 0.701*** | 0.061 | -0.086 | -0.288** | -0.084 | |||
弹性- | 0.075 | 0.084* | 0.336*** | 0.318** | -0.010 | -0.143 | -0.511*** | -0.392*** | ||||
t3 | 弹性+ | 0.018** | -0.182 | 0.689*** | 0.682*** | -0.373** | -0.238* | 0.016 | 0.145 | |||
弹性- | 0.033* | 0.190*** | 0.197 | 0.183 | -0.215* | -0.252* | -0.162 | 0.054 | ||||
t4 | 弹性+ | 0.281*** | 0.387*** | 0.192 | 0.244* | 0.232 | 0.017 | 0.178 | 0.254** | |||
弹性- | 0.105 | 0.059 | 0.336** | 0.322** | 0.327** | 0.320** | 0.015 | -0.119 |
Tab. 2
Correlation between the trends of resilience and precipitation"
Spearman相关系数 | 整体 | 南部 | 中部 | 北部 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
同期降水 | 前期降水 | 同期降水 | 前期降水 | 同期降水 | 前期降水 | 同期降水 | 前期降水 | |||||
t1-t2 | 弹性+ | 0.070 | - | -0.024 | - | 0.302* | - | -0.384** | - | |||
弹性- | -0.122 | - | 0.137 | - | -0.081 | - | -0.155 | - | ||||
t2-t3 | 弹性+ | 0.418*** | -0.027 | 0.171 | -0.158 | 0.010 | 0.074 | -0.288* | 0.499*** | |||
弹性- | -0.071 | 0.285*** | 0.156 | 0.133 | 0.213* | 0.274** | -0.326** | 0.208 | ||||
t3-t4 | 弹性+ | -0.260*** | -0.387*** | -0.277* | -0.231* | 0.422*** | 0.316** | -0.211* | -0.027 | |||
弹性- | -0.111 | 0.350*** | -0.166 | -0.089 | -0.146 | 0.291*** | 0.139 | 0.246* |
[1] |
Holling C S. Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics, 1973, 4(1): 1-23.
doi: 10.1146/ecolsys.1973.4.issue-1 |
[2] | Holling C S. Engineering resilience versus ecological resilience[J]. Engineering within Ecological Constraints, 1996, 31(1996): 32. |
[3] | Scheffer M. Critical Transitions in Nature and Society[M]. Princeton, USA: Princeton University Press, 2009. |
[4] |
Charney J G. Dynamics of deserts and drought in Sahel[J]. Quarterly Journal of the Royal Meteorological Society, 1975, 101(428): 193-202.
doi: 10.1002/(ISSN)1477-870X |
[5] |
Scheffer M, Carpenter S, Foley J A, et al. Catastrophic shifts in ecosystems[J]. Nature, 2001, 413(6856): 591-596.
doi: 10.1038/35098000 |
[6] |
Xu Y, Yang J, Chen Y. NDVI-based vegetation responses to climate change in an arid area of China[J]. Theoretical and Applied Climatology, 2016, 126(1): 213-222.
doi: 10.1007/s00704-015-1572-1 |
[7] | 王新军, 赵成义, 杨瑞红, 等. 基于像元二分法的沙地植被景观格局特征变化分析[J]. 农业工程学报, 2016, 32(3): 285-294. |
[Wang Xinjun, Zhao Chengyi, Yang Ruihong, et al. Dynamic characteristics of sandy vegetation landscape pattern based on dimidiate pixel model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 285-294. ] | |
[8] |
Verbesselt J, Hyndman R, Newnham G, et al. Detecting trend and seasonal changes in satellite image time series[J]. Remote Sensing of Environment, 2010, 114(1): 106-115.
doi: 10.1016/j.rse.2009.08.014 |
[9] |
Verbesselt J, Hyndman R, Zeileis A, et al. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series[J]. Remote Sensing of Environment, 2010, 114(12): 2970-2980.
doi: 10.1016/j.rse.2010.08.003 |
[10] |
Verbesselt J, Zeileis A, Herold M. Near real-time disturbance detection using satellite image time series[J]. Remote Sensing of Environment, 2012, 123: 98-108.
doi: 10.1016/j.rse.2012.02.022 |
[11] |
Von Keyserlingk J, De Hoop M, Mayor A G, et al. Resilience of vegetation to drought: Studying the effect of grazing in a Mediterranean rangeland using satellite time series[J]. Remote Sensing of Environment, 2021, 255: 112270.
doi: 10.1016/j.rse.2020.112270 |
[12] |
Verbesselt J, Umlauf N, Hirota M, et al. Remotely sensed resilience of tropical forests[J]. Nature Climate Change, 2016, 6(11): 1028-1031.
doi: 10.1038/NCLIMATE3108 |
[13] |
Dakos V, Carpenter S R, Brock W A, et al. Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data[J]. Plos One, 2012, 7(7): e41010.
doi: 10.1371/journal.pone.0041010 |
[14] |
Scheffer M, Carpenter S R, Lenton T M, et al. Anticipating critical transitions[J]. Science, 2012, 338(6105): 344-348.
doi: 10.1126/science.1225244 pmid: 23087241 |
[15] |
Hishe H, Oosterlynck L, Giday K, et al. A combination of climate, tree diversity and local human disturbance determine the stability of dry Afromontane forests[J]. Forest Ecosystems, 2021, 8(1): 1-16.
doi: 10.1186/s40663-020-00279-4 |
[16] |
De Keersmaecker W, Lhermitte S, Tits L, et al. A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover[J]. Global Ecology and Biogeography, 2015, 24(5): 539-548.
doi: 10.1111/geb.2015.24.issue-5 |
[17] |
Arani B M S, Carpenter S R, Lahti L, et al. Exit time as a measure of ecological resilience[J]. Science, 2021, 372(6547): eaay4895.
doi: 10.1126/science.aay4895 |
[18] |
Dakos V, Kefi S. Ecological resilience: What to measure and how[J]. Environmental Research Letters, 2022, 17(4): 043003.
doi: 10.1088/1748-9326/ac5767 |
[19] |
Nolting B C, Abbott K C. Balls, cups, and quasi-potentials: Quantifying stability in stochastic systems[J]. Ecology, 2016, 97(4): 850-864.
pmid: 27220202 |
[20] |
Meng Y Y, Liu X N, Ding C, et al. Analysis of ecological resilience to evaluate the inherent maintenance capacity of a forest ecosystem using a dense Landsat time series[J]. Ecological Informatics, 2020, 57: 101064.
doi: 10.1016/j.ecoinf.2020.101064 |
[21] | 曾勇. 古尔班通古特沙漠植物多样性对降水变化的敏感性研究[D]. 石河子: 石河子大学, 2015. |
[Zeng Yong. Study of Sensitivity of Plant Diversity to Precipitation Change in the Gurbantünggüt Desert[D]. Shihezi: Shihezi University, 2015. ] | |
[22] | 李培基. 中国西部积雪变化特征[J]. 地理学报, 1993, 60(6): 505-515. |
[Li Peiji. Dynamic characteristic of snow cover in western China[J]. Acta Geographica Sinica, 1993, 60(6): 505-515. ] | |
[23] | 张立运, 陈昌笃. 论古尔班通古特沙漠植物多样性的一般特点[J]. 生态学报, 2002, 22(11): 1923-1932. |
[Zhang Liyun, Chen Changdu. On the general characteristics of plant diversity of Gurbantunggut sandy desert[J]. Acta Ecologica Sinica, 2002, 22(11): 1923-1932. ] | |
[24] | 王雪芹, 蒋进, 雷加强, 等. 古尔班通古特沙漠短命植物分布及其沙面稳定意义[J]. 地理学报, 2003, 70(4): 598-605. |
[Wang Xueqin, Jiang Jin, Lei Jiaqiang, et al. The distribution of ephemeral vegetation on the longitudinal dune surface and its stabilization significance in the Gurbantunggut Desert[J]. Acta Geographica Sinica, 2003, 70(4): 598-605. ] | |
[25] | 陈曦, 姜逢清, 胡汝骥, 等. 中国干旱区自然地理[M]. 北京: 科学出版社, 2015. |
[Chen Xi, Jiang Fengqing, Hu Ruji, et al. A brief Introduction to Physical Geography of Arid Land in China[M]. Beijing: Science Press, 2015. ] | |
[26] | 罗宁, 刘尊驰, 于航, 等. 古尔班通古特沙漠南部植物多样性的区域差异[J]. 生态学报, 2016, 36(12): 3572-3581. |
[Luo Ning, Liu Zunchi, Yu Hang, et al. Regional differences in plant diversity in the southern Gurbantonggut desert[J]. Acta Ecologica Sinica, 2016, 36(12): 3572-3581. ] | |
[27] |
Holben B N. Characteristics of maximum-value composite images from temporal AVHRR data[J]. International Journal of Remote Sensing, 1986, 7(11): 1417-1434.
doi: 10.1080/01431168608948945 |
[28] | 杨怡, 吴世新, 庄庆威, 等. 2000—2018年古尔班通古特沙漠EVI时空变化特征[J]. 干旱区研究, 2019, 36(6): 1512-1520. |
[Yang Yi, Wu Shixin, Zhuang Qingwei, et al. Spatiotemporal change of EVI in the Gurbantunggut Desert from 2000 to 2018[J]. Arid Zone Research, 2019, 36(6): 1512-1520. ] | |
[29] | 岳天祥. 地球表层系统模拟分析原理与方法[M]. 北京: 科学出版社, 2017. |
[Yue Tianxiang. Principles and Methods for Simulating Earth’s Surface Systems[M]. Beijing: Science Press, 2017. ] | |
[30] | Auger-Methe M, Newman K, Cole D, et al. A guide to state-space modeling of ecological time series[J]. Ecological Monographs, 2021, 91(4): e01470. |
[31] |
Holmes E E, Ward E J, Wills K. MARSS: Multivariate autoregressive state-space models for analyzing time-series data[J]. The R Journal, 2012, 4(1): 11-19.
doi: 10.32614/RJ-2012-002 |
[32] | Myers J L, Well A D, Lorch R F. Research design and statistical analysis[M]. New York, USA: Routledge, 2013. |
[33] |
Bai J, Shi H, Yu Q, et al. Satellite-observed vegetation stability in response to changes in climate and total water storage in Central Asia[J]. Science of The Total Environment, 2019, 659: 862-871.
doi: 10.1016/j.scitotenv.2018.12.418 |
[34] | 高洁, 赵勇, 姚俊强, 等. 气候变化背景下中亚干旱区大气水分循环要素时空演变[J]. 干旱区研究, 2022, 39(5): 1371-1384. |
[Gao Jie, Zhao Yong, Yao Junqiang, et al. Spatiotemporal evolution of atmospheric water cycle factors in arid regions of Central Asia under climate change[J]. Arid Zone Research, 2022, 39(5): 1371-1384. ] | |
[35] |
Fu A, Wang W, Li W, et al. Resistance and resilience of desert riparian communities to extreme droughts[J]. Forests, 2022, 13(7): 1032.
doi: 10.3390/f13071032 |
[36] | 于丹丹, 唐立松, 李彦, 等. 古尔班通古特沙漠白梭梭群落林下层物种多样性的空间分异[J]. 干旱区研究, 2010, 27(4): 559-566. |
[Yu Dandan, Tang Lisong, Li Yan, et al. Spatial variation of the diversity characteristics of understory plant species of Haloxylon persicum in the Gurbantunggut Desert[J]. Arid Zone Research, 2010, 27(4): 559-566. ] | |
[37] |
张荣, 刘彤. 古尔班通古特沙漠南部植物多样性及群落分类[J]. 生态学报, 2012, 32(19): 6056-6066.
doi: 10.5846/stxb |
[Zhang Rong, Liu Tong. Plant species diversity and community classification in the southern Gurbantunggut Desert[J]. Acta Ecologica Sinica, 2012, 32(19): 6056-6066. ]
doi: 10.5846/stxb |
|
[38] |
李功麟, 张定海, 张志山, 等. 古尔班通古特沙漠沙丘主要灌木的种群数量动态[J]. 中国沙漠, 2021, 41(2): 129-137.
doi: 10.7522/j.issn.1000-694X.2020.00103 |
[Li Gonglin, Zhang Dinghai, Zhang Zhishan, et al. Population dynamics of main sand-fixing shrubs in the Gurbantunggut Desert[J]. Journal of Desert Research, 2021, 41(2): 129-137. ]
doi: 10.7522/j.issn.1000-694X.2020.00103 |
|
[39] | 蒋超亮, 吴玲, 安静, 等. 古尔班通古特沙漠旱生植物时空分布特征[J]. 生态学报, 2019, 39(3): 936-944. |
[Jiang Chaoliang, Wu Ling, An Jing, et al. Spatio-temporal distribution of xerophytes in the Gurbantunggut Desert[J]. Acta Ecologica Sinica, 2019, 39(3): 936-944. ] | |
[40] |
丁俊祥, 范连连, 李彦, 等. 古尔班通古特沙漠6种荒漠草本植物的生物量分配与相关生长关系[J]. 中国沙漠, 2016, 36(5): 1323-1330.
doi: 10.7522/j.issn.1000-694X.2015.00107 |
[Ding Junxiang, Fan Lianlian, Li Yan, et al. Biomass allocation and allometric relationships of six desert herbaceous plants in the Gurbantunggut Desert[J]. Journal of Desert Research, 2016, 36(5): 1323-1330. ]
doi: 10.7522/j.issn.1000-694X.2015.00107 |
|
[41] |
李志忠, 靳建辉, 刘瑞, 等. 古尔班通古特沙漠风沙地貌研究进展评述[J]. 中国沙漠, 2022, 42(1): 41-47.
doi: 10.7522/j.issn.1000-694X.2021.00186 |
[Li Zhizhong, Jin Jianhui, Liu Rui, et al. Review and prospect of aeolian geomorphology research in Gurbantunggut Desert, China[J]. Journal of Desert Research, 2022, 42(1): 41-47. ]
doi: 10.7522/j.issn.1000-694X.2021.00186 |
[1] | XUE Zhixuan, ZHANG Li, WANG Xinjun, LI Yongkang, ZHANG Guanhong, LI Peiyao. Downscaling analysis of SMAP soil moisture products in Gurbantunggut Desert [J]. Arid Zone Research, 2023, 40(4): 583-593. |
[2] | LI Yongkang,WANG Xinjun,MA Yanfei,HU Guifeng,GUI Haiyue,ZHANG Guanhong. Downscaling land surface temperature through AMSR-2 passive microwave observations by Catboost semiempirical algorithms [J]. Arid Zone Research, 2021, 38(6): 1637-1649. |
[3] | ZHUANG Weiwei,HOU Baolin. Nitrogen uptake strategies of short-lived plants in the Gurbantunggut Desert [J]. Arid Zone Research, 2021, 38(5): 1393-1400. |
[4] | LI Bin,WU Zhifang,TAO Ye,ZHOU Xiaobing,ZHANG Bingchang. Effects of biological soil crust type on herbaceous diversity in the Gurbantunggut Desert [J]. Arid Zone Research, 2021, 38(2): 438-449. |
[5] | YUE Yue-meng, LI Chen-hua, XU Zhu, TANG Li-song. Variation characteristics of canopy nutrients during the rainfall process of Haloxylon ammodendron and Haloxylon persicum in the Gurbantunggut Desert [J]. Arid Zone Research, 2020, 37(5): 1293-1300. |
[6] | LI Zhe-hua, , LI Sheng-yu, LI Bing-wen, FAN Jing-long, JIANG Jin, LI Ya-ping , , SONG Chun-wu. Spatial Variation of Soil Chemical Properties of Longitudinal Dunes with Different Vegetation Coverage Levels [J]. Arid Zone Research, 2020, 37(1): 160-167. |
[7] | YANG Yi, WU Shi-xin, ZHUANG Qing-wei, NIU Ya-xuan. Spatiotemporal Change of EVI in the Gurbantunggut Desert from 2000 to 2018 [J]. Arid Zone Research, 2019, 36(6): 1512-1520. |
[8] |
FAN Lian-lian, LI Yao-ming, Nataliia Terekhina, MA Xue-xi, MA Jie.
Response of Herbaceous Plant Quantity to Different Water Input and Meteorological Factors in a Cold Desert #br# [J]. Arid Zone Research, 2019, 36(1): 139-146. |
[9] | ZHOU Chao-bin,WANG Meng-yao, GONG Wei. Relationship between Ray Tissue Features and Non-structural Carbohydrates in Xylem of Haloxylon ammodendron [J]. , 2018, 35(5): 1105-1110. |
[10] | WU Nan, ZHANG Jing, WANG Yue, YIN Jin-fei, ZHANG Yuan-ming. Effects of Snow Cover and Arbuscular Mycorrhizal Fungi Network on the Seedling Growth of Erodium oxyrrhynchum [J]. , 2018, 35(3): 624-632. |
[11] | ZHUANG Weiwei,ZHANG Yuanming. Effect of Soil Microbiotic Crust on Plant Community in the Gurbantunggut Desert [J]. , 2017, 34(6): 1338-1344. |
[12] | WU Nan, ZHANG Yuan-Ming, PAN Hui-Xia. Response of Fungialgae Symbiotic Lichen Crusts to Grazed Livestock Disturbance in the Gurbantunggut Desert [J]. , 2012, 29(6): 1032-1038. |
[13] | LI Xing, JIANG Jin, SONG Chun-Wu, WEI Zhen-Jiang, YIN Wen-Juan. Effect of Super Absorbent Polymer on Seed Germination and Seedling Roots of Haloxylon ammodendron and H. persicum [J]. , 2012, 29(5): 797-801. |
[14] | ZHU Li-Jie, WANG Shao-Ming, XIA Jun, ZHU Hong-Wei. Clonal Configuration and Ramet Population Characteristics of Stipagrostis pennata in Different Habitats [J]. , 2012, 29(5): 770-775. |
[15] | ZHAO Hong-Mei, HUANG Gang, MA Jian , LI Yan, FAN Lian-Lian, ZHOU Li. Study on Dynamic Status of Litter Decomposition and Nutrients of Typical Desert Plants [J]. , 2012, 29(4): 628-634. |
|