Arid Zone Research ›› 2022, Vol. 39 ›› Issue (6): 1801-1809.doi: 10.13866/j.azr.2022.06.10
• Land and Water Resources • Previous Articles Next Articles
WANG Weilu1(),LIU Tie2,3(),LUO Geping2
Received:
2020-04-27
Revised:
2020-06-04
Online:
2022-11-15
Published:
2023-01-17
Contact:
Tie LIU
E-mail:739448479@qq.com;tie.liu@hotmail.com
WANG Weilu,LIU Tie,LUO Geping. An evaluation of water environmental carrying capacity in Kyrgyzstan based on sustainable development goals[J].Arid Zone Research, 2022, 39(6): 1801-1809.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Comprehensive evaluation index system of water environmental carrying capacity in Kyrgyzstan based on SDG index"
准则层 | 指标 | 指标性质 | 计算方法 | 指标含义 | 对应SDG目标 |
---|---|---|---|---|---|
社会经济 | 人均GDP/美元 | + | 国内生产总值/总人口 | 经济发展状况 | 可持续经济增长(SDG8) |
人口密度/(人·km-2) | - | 总人口/总面积 | 人口聚集程度 | 可持续城市(SDG11) | |
城镇化率/% | + | (城镇人口/总人口) ×100% | 城镇化程度 | 可持续城市(SDG11) | |
国家环境保护预算支出/百万索姆 | + | 统计数据 | 地区水环保工作投资力度 | 水和环境卫生(SDG6) | |
水资源 | 用水效率/(美元·m-3) | + | 总产值/(用水量-回流量) | 用水效率 | 水和环境卫生(SDG6) |
用水紧缺程度/% | - | 总可再生淡水资源/(总水资源量+降水量-生态环境用水量) | 用水压力 | 水和环境卫生(SDG6) | |
人均取水量总量/ (m3·人-1·a-1) | - | 总取水总量/总人口 | 生产、生活取水水平综合指标 | 水和环境卫生(SDG6) | |
水环境 | BOD排放量/t | - | 观测数据 | 水体水质污染情况 | 水和环境卫生(SDG6) |
氨氮排放量/t | - | 观测数据 | 水体水质污染情况 | 水和环境卫生(SDG6) | |
肥料消费量/(kg·hm-2) | - | 统计数据 | 农业污染压力 | 消除饥饿(SDG2) | |
废污水排放量/108 m3 | - | 观测数据 | 水体水质污染情况 | 水和环境卫生(SDG6) | |
污水处理率/% | + | (污水排放量/废水站收集的废水量)×100% | 污水处理能力 | 水和环境卫生(SDG6) | |
水生态 | 森林覆盖比例/% | + | 森林面积/国土面积 | 土地覆被与水源涵养 | 可持续陆地生态系统(SDG15) |
水体范围/km2 | + | 观测数据 | 水资源整体丰裕程度 | 水和环境卫生(SDG6) | |
可再生水资源人均占有量/(m3·人-1) | + | 当地可再生水资源总量/总人口 | 水资源丰缺及发展潜力 | 水和环境卫生(SDG6) |
Tab. 3
Component matrix"
变量 | 主成分一 | 主成分二 | 主成分三 |
---|---|---|---|
人均GDP | 0.944 | -0.018 | 0.02 |
人口密度 | -0.971 | 0.188 | -0.033 |
城镇化率 | 0.845 | -0.432 | 0.126 |
国家环境保护预算支出 | 0.891 | 0.246 | -0.151 |
用水效率 | 0.984 | -0.106 | 0.064 |
用水紧缺程度 | -0.868 | 0.354 | 0.302 |
人均取水量总量 | 0.969 | -0.029 | 0.005 |
BOD排放量 | 0.768 | 0.147 | 0.173 |
氨氮排放量 | -0.156 | -0.843 | 0.313 |
肥料消费量 | 0.328 | -0.05 | -0.922 |
废污水排放量 | 0.769 | 0.526 | 0.217 |
污水处理率 | 0.796 | 0.554 | 0.197 |
森林覆盖比例 | 0.962 | -0.17 | 0.155 |
水体范围 | -0.946 | -0.019 | 0.112 |
可再生水资源人均占有量 | -0.97 | 0.148 | -0.025 |
Tab. 4
Scores of water environmental capacity from 2006 to 2020"
年份 | F1 | F2 | F3 | 综合得分 | 排序 |
---|---|---|---|---|---|
2006 | -1.07 | -0.01 | 0.34 | -0.81 | 14 |
2007 | -0.96 | -0.03 | 0.3 | -0.73 | 13 |
2008 | -0.67 | 0.09 | 0.13 | -0.5 | 12 |
2009 | 0.17 | 1.1 | 0.54 | 0.33 | 11 |
2010 | 0.29 | 0.78 | 0.71 | 0.39 | 10 |
2011 | 0.36 | 1.22 | 0.26 | 0.46 | 9 |
2012 | 0.48 | 0.92 | 0.62 | 0.55 | 8 |
2013 | 0.6 | 0.63 | 0.85 | 0.63 | 7 |
2014 | 0.78 | 0.74 | 1 | 0.8 | 6 |
2015 | 1.59 | 0.42 | -0.02 | 1.3 | 5 |
2016 | 1.73 | 0.5 | 0.03 | 1.42 | 4 |
2017 | 2.06 | 0.28 | -0.06 | 1.64 | 3 |
2018 | 2.14 | 0.1 | 0.55 | 1.73 | 1 |
2019 | 2.13 | 0.04 | 0.65 | 1.73 | 1 |
2020 | 2.13 | -0.08 | 0.66 | 1.71 | 2 |
Tab. 5
Index weight calculation results"
指标 | 熵值法 | AHP法 | 组合权重 |
---|---|---|---|
人均GDP | 0.07043 | 0.03176 | 0.04087 |
人口密度 | 0.09961 | 0.07968 | 0.14503 |
城镇化率 | 0.03522 | 0.20893 | 0.13445 |
国家环境保护预算支出 | 0.04980 | 0.03664 | 0.03335 |
用水效率 | 0.08041 | 0.04350 | 0.06392 |
用水紧缺程度 | 0.05065 | 0.15204 | 0.14072 |
人均取水量总量 | 0.03191 | 0.05694 | 0.03320 |
BOD排放量 | 0.05027 | 0.05508 | 0.05060 |
氨氮排放量 | 0.08962 | 0.01228 | 0.02012 |
肥料消费量 | 0.04036 | 0.03181 | 0.02346 |
废污水排放量 | 0.16922 | 0.02972 | 0.09188 |
污水处理率 | 0.12526 | 0.02598 | 0.05946 |
森林覆盖比例 | 0.01834 | 0.06028 | 0.02020 |
水体范围 | 0.06057 | 0.07222 | 0.07993 |
可再生水资源人均占有量 | 0.03333 | 0.10314 | 0.06282 |
[1] |
Li Yizhen, Ma Long, Li Yaoming, et al. Exploration of the driving factors and distribution of fecal coliform in rivers under a traditional agro-pastoral economy in Kyrgyzstan, Central Asia[J]. Chemosphere, 2022, 286(2): 131700-131708.
doi: 10.1016/j.chemosphere.2021.131700 |
[2] | 李清龙, 王路光, 张焕祯, 等. 水环境承载力理论研究与展望[J]. 地理与地理信息科学, 2004, 20(1): 87-89. |
[ Li Qinglong, Wang Luguang, Zhang Huanzhen, et al. Research and prospect on theoretical framework of water environmental bearing capacity[J]. Geography and Geo-Information Science, 2004, 20(1): 87-89. ] | |
[3] |
Song Weiwei, Pang Yong. Research on narrow and generalized water environment carrying capacity, economic benefit of Lake Okeechobee, USA[J]. Ecological Engineering, 2021, 173: 106420-106432.
doi: 10.1016/j.ecoleng.2021.106420 |
[4] | 汪嘉杨, 翟庆伟, 郭倩, 等. 太湖流域水环境承载力评价研究[J]. 中国环境科学, 2017, 37(5): 1979-1987. |
[ Wang Jiayang, Zhai Qingwei, Guo Qian, et al. Study on water environmental carrying capacity evaluation in Taihu Lake Basin[J]. China Environmental Science, 2017, 37(5): 1979-1987. ] | |
[5] |
Lu Yan, Xu Hongwen, Wang Yuexiang, et al. Evaluation of water environmental carrying capacity of city in Huaihe River Basin based on the AHP method: A case in Huai’an City[J]. Water Resources and Industry, 2017, 18: 71-77.
doi: 10.1016/j.wri.2017.10.001 |
[6] | 朱磊, 陈迎. “一带一路”倡议对接2030年可持续发展议程——内涵、目标与路径[J]. 世界经济与政治, 2019(4): 79-100. |
[ Zhu Lei, Chen Ying. Integrating Belt and Road initiative with UN 2030 sustainable development a genda: Connotations and routes[J]. World Economics and Politics, 2019(4): 79-100. ] | |
[7] |
Rodrigo G G C, Walter L F, Osvaldo L G Q, et al. A literature-based review on potentials and constraints in the implementation of the sustainable development goals[J]. Journal of Cleaner Production, 2018, 198(10): 1276-1288.
doi: 10.1016/j.jclepro.2018.07.102 |
[8] | 陈文婷, 郑明霞, 夏青, 等. 基于产业细化和多要素约束的白洋淀流域水环境承载力系统动力学模拟与调控[J]. 长江流域资源与环境, 2022, 31(2): 345-357. |
[ Chen Wenting, Zheng Mingxia, Xia Qing, et al. System dynamics simulation and control strategy of water environment carrying capacity in Baiyangdian Basin based on industry refinement and multifactor constraint[J]. Resources and Environment in the Yangtze Basin, 2022, 31(2): 345-357. ] | |
[9] |
Chen Yaning, Li Zhi, Fang Gonghuan, et al. Large hydrological processes changes in the Transboundary Rivers of Central Asia[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(10): 5059-5069.
doi: 10.1029/2017JD028184 |
[10] | 程清平, 钟方雷, 左小安, 等. 美丽中国与联合国可持续发展目标( SDGs) 结合的黑河流域水资源承载力评价[J]. 中国沙漠, 2020, 40(1): 204-214. |
[ Cheng Qingping, Zhong Fanglei, Zuo Xiao’an, et al. Evaluation of water resources carrying capacity of Heihe River Basin combining beautiful China with SDGs[J]. Journal of Desert Research, 2020, 40(1): 204-214. ] | |
[11] |
Ravn B E, Kørnøv L, Lyhne I, et al. Integrating SDGs in environmental assessment: Unfolding SDG functions in emerging practices[J]. Environmental Impact Assessment Review, 2021, 90: 106632-106641.
doi: 10.1016/j.eiar.2021.106632 |
[12] |
Zou Zhihong, Yun Yi, Sun Jingnan. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment[J]. Journal of Environmental Sciences, 2006, 18(5): 1020-1023.
doi: 10.1016/S1001-0742(06)60032-6 |
[13] |
Wang Y M, Zhou X D, Engel B, et al. Water environment carrying capacity in Bosten Lake basin[J]. Journal of Cleaner Production, 2018, 199: 574-583.
doi: 10.1016/j.jclepro.2018.07.202 |
[14] | 余金龙, 尹亮, 鲍广强, 等. 基于BP神经网络的腾格里湖水环境承载力研究[J]. 中国农村水利水电, 2017(11): 83-86. |
[ Yu Jinlong, Yin Liang, Bao Guangqiang, et al. Research on water environmental carrying capacity of Tenggeli Lake based on BP neural networks[J]. China Rural Water and Hydropower, 2017(11): 83-86. ] | |
[15] | 曹若馨, 张可欣, 曾维华, 等. 基于BP神经网络的水环境承载力预警研究——以北运河为例[J]. 环境科学学报, 2021, 41(5): 147-149. |
[ Cao Ruoxing, Zhang Kexin, Zeng Weihua, et al. Research on the early-warning method of water environment carrying capacitybased on BP neural network: A case study of Beiyunhe River Basin[J]. Acta Scientiae Circumstantiae, 2021, 41(5): 147-149. ] | |
[16] | 南楠. 基于灰色关联理论与SD模型的江苏省水环境承载力研究[D]. 南京: 南京大学, 2012. |
[ Nan Nan. Study on Water Environmental Carrying Capacity of Jiangsu Province Based on Grey Correlation Theory and SD Model[D]. Nanjing: Nanjing university, 2012. ] | |
[17] | 查木哈, 吴琴, 马成功, 等. 基于DPSIR模型评价内蒙古水环境承载力[J]. 内蒙古农业大学学报, 2020, 41(6): 65-73. |
[ Cha Muha, Wu Qing, Ma Chenggong, et al. Evaluation of water environmental carrying capacity based on dpsir model in Inner Mongolia[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2020, 41(6): 65-73. ] | |
[18] |
Wang Xiaoyan, Liu Lei, Zhang Silong. Integrated model framework for the evaluation and prediction of the water environmental carrying capacity in the Guangdong-Hong Kong-Macao Greater Bay Area[J]. Ecological Indicators, 2021, 130: 108083-108093.
doi: 10.1016/j.ecolind.2021.108083 |
[19] | 赵东, 严家家, 陈林林, 等. 基于物元可拓模型的邳城灌区水环境承载力评价[J]. 水利技术监督, 2021(8): 153-156. |
[ Zhao Dong, Yan Jiajia, Chen Linlin, et al. Evaluation of water environmental carrying capacity in API City irrigation District based on matter-element extension model[J]. Technical Supervision in Water Resources, 2021(8): 153-156. ] | |
[20] |
Liu Y, Wang P, Boris G, et al. A review of water pollution arising from agriculture and mining activities in Central Asia: Facts, causes and effects[J]. Environmental Pollution, 2021, 291: 118209-118219.
doi: 10.1016/j.envpol.2021.118209 |
[21] |
Trnqvist R, Jarsj J, Karimov B. Health risks from large-scale water pollution: Trends in Central Asia[J]. Environment International, 2011, 37(2): 435-422.
doi: 10.1016/j.envint.2010.11.006 pmid: 21131050 |
[22] |
Karthe D, Abdullaev I, Boldgiv B, et al. Water in Central Asia: an integrated assessment for science-based management[J]. Environmental Earth Sciences, 2017, 76(20): 1-15.
doi: 10.1007/s12665-016-6304-z |
[23] |
Liu Wen, Ma Long, Li Yaoming, et al. Heavy metals and related humanhealth risk assessment for river waters in the Issyk-Kul Basin, Kyrgyzstan, Central Asia[J]. International Journal of Environmental Research and Public Health, 2020, 17(10): 3506-3518.
doi: 10.3390/ijerph17103506 |
[24] |
Chen Yaning, Fang Gonghuan, Hao Haichao, et al. Water use efficiency data from 2000 to 2019 in measuring progress towards SDGs in Central Asia[J]. Big Earth Data, 2022, 6(1): 90-102.
doi: 10.1080/20964471.2020.1851891 |
[25] |
Hill A, Wilson A, Minbaeva C, et al. Hydrologic controls and water vulnerabilities in the Naryn River Basin, Kyrgyzstan: A socio-hydro case study of water stressors in Central Asia[J]. Water, 2017, 9(5): 325-340.
doi: 10.3390/w9050325 |
[26] | 于水, 陈迪桃, 黄法融, 等. 中亚农业水资源脆弱性空间格局及分区研究[J]. 中国农业资源与区划, 2020, 41(4): 11-20. |
[ Yu Shui, Chen Ditao, Huang Farong, et al. Spatial pattern and zoning of agricultural water resources vulnerability during crop growth period in Central Asia[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(4): 11-20.] | |
[27] | 吴淼, 张小云, 王丽贤, 等. 吉尔吉斯斯坦水资源及其利用研究[J]. 干旱区研究, 2011, 28(3): 455-462. |
[ Wu Miao, Zhang Xiaoyun, Wang Lixian, et al. Study on water resources and its utilization in Kyrgyzstan[J]. Arid Zone Research, 2011, 28(3): 455-462. ] | |
[28] | 崔丹, 陈馨, 曾维华. 水环境承载力中长期预警研究——以昆明市为例[J]. 中国环境科学, 2018, 38(3): 1174-1184. |
[ Cui Dan, Chen Xin, Zeng Weihua. Investigations on the medium-to-long term early warning of water environmental carrying capacity: A case study of Kunming City[J]. China Environmental Science, 2018, 38(3): 1174-1184. ] | |
[29] | 王富强, 李鑫, 赵衡, 等. 基于水环境容量和综合指标体系的区域水环境承载力评价[J]. 华北水利水电大学学报(自然科学版), 2021, 42(2): 24-31. |
[ Wang Fuqiang, Li Xin, Zhao Heng, et al. Evaluation of regional water environment carrying capacity based on water environment capacity and comprehensive index system[J]. Journal of North China University of Water Resources and Electric Power ( Natural Science Edition), 2021, 42(2): 24-31. ] | |
[30] | 徐志青, 刘雪瑜, 袁鹏, 等. 南京市水环境承载力动态变化研究[J]. 环境科学研究, 2019, 32(4): 557-564. |
[ Xu Zhiqing, Liu Xueyu, Yuan Peng, et al. Dynamic change of water environment carrying capacity in Nanjing City[J]. Research of Environmental Sciences, 2019, 32(4): 557-564. ] | |
[31] |
Ho L, Goethals P L. Opportunities and challenges for the custainability of lakes and reservoirs in relation to the Sustainable Development Goals(SDGs)[J]. Water, 2019, 11(7): 1462-1480.
doi: 10.3390/w11071462 |
[32] |
Wu F, Zhuang Z C, Liu H L, et al. Evaluation of water resources carrying capacity using principal component Analysis: An empirical study in Huai’an, Jiangsu, China[J]. Water, 2021, 13(18): 2587-2599.
doi: 10.3390/w13182587 |
[33] | 贺辉辉, 丁珏, 程宇, 等. 安徽省淮河流域水环境承载力动态评价研究[J]. 环境科学与技术, 2017, 40(S2): 280-287. |
[ He Huihui, Ding Jue, Cheng Yu, et al. Dynamic evaluation of water environment carrying capacity of Huai River in Anhui Province[J]. Environmental Science & Technology, 2017, 40(S2): 280-287. ] | |
[34] | 赵传起, 朱悦, 王留锁, 等. 基于系统动力学和向量模法的亮子河流域水环境承载力评价[J]. 环境保护科学, 2021, 47(1): 136-142. |
[ Zhao Chuanqi, Zhu Yue, Wang Liusuo, et al. Evaluation of water environment carrying capacity of Liangzihe River Basin nased on system dynamics and vector norm method[J]. Environmental Protection Science, 2021, 47(1): 136-142. ] | |
[35] | 郑毅, 蒋进元, 杨延梅, 等. 基于向量模法的南宁市水环境承载力评价分析[J]. 环境影响评价, 2017, 39(1): 65-68. |
[ Zheng Yi, Jiang Jinyuan, Yang Yanmei, et al. Assessment and analysis on water environment carrying capacity based on vector norm method in Nanning[J]. Environmental Impact Assessment, 2017, 39(1): 65-68. ] | |
[36] | 白辉, 刘雅玲, 陈岩, 等. 层次分析法与向量模法在水环境承载力评价中的应用——以胶州市为例[J]. 环境保护科学, 2016, 42(4): 60-65. |
[ Bai Hui, Liu Yaling, Chen Yan, et al. Application of analytic hierarchy process and vector norm method in evaluation of water environmental carrying capacity in Jiaozhou City[J]. Environmental Protection Science, 2016, 42(4): 60-65. ] | |
[37] | Sorg A, Mosello B, Shalpykova G, et al. Coping with changing water resources: The case of the Syr Darya river basin in Central Asia[J]. Environmental Science & Policy, 2014, 43(S1): 68-77. |
[38] |
Wang Xuanxuan, Chen Yaning, Li Zhi, et al. Development and utilization of water resources and assessment of water security in Central Asia[J]. Agricultural Water Management, 2020, 240: 106297-106307.
doi: 10.1016/j.agwat.2020.106297 |
[39] |
Zakir B, Kamshat T, Ronny B, et al. Water related health problems in Central Asia: A review[J]. Water, 2016, 8(6): 219-231.
doi: 10.3390/w8060219 |
[1] | WU Miao, ZHANG Xiao-yun, WANG Li-xian, CHEN Xi, ZHANG Jie-bin, BAO An-min. Study on Water Resources and Its Utilization in Kyrgyzstan [J]. , 2011, 28(3): 455-462. |
|