Arid Zone Research ›› 2022, Vol. 39 ›› Issue (6): 1739-1752.doi: 10.13866/j.azr.2022.06.05
• Weather and Applied Climate • Previous Articles Next Articles
CAO Yiqing1(),LONG Xiao1(),LI Chao1,WANG Siyi1,ZHAO Jianhua2
Received:
2022-04-23
Revised:
2022-05-23
Online:
2022-11-15
Published:
2023-01-17
Contact:
Xiao LONG
E-mail:oucyiqing2015@163.com;longxiao@lzu.edu.cn
CAO Yiqing,LONG Xiao,LI Chao,WANG Siyi,ZHAO Jianhua. Numerical study on the effect of low-level jet on two rainstorms on the east side of the Helan Mountain[J].Arid Zone Research, 2022, 39(6): 1739-1752.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Fig. 2
Composition of geopotential height (contour, unit: dagpm, brown lines denotes tough and shear line, the grey shade is the terrain height) and wind field (vector, unit: m·s-1, the shaded represent the region of wind speed ≥12 m·s-1) on 500 hPa and 700 hPa at 18:00 on 18 July 2018 and 06:00 on 4 June 2017"
Tab. 1
WRF pattern grid design and parameterized scheme configuration"
模拟域 | D01 | D02 | D03 |
---|---|---|---|
格距 | 27 km | 9 km | 3 km |
格点数 | 181×181 | 181×181 | 181×181 |
微物理过程 | WSM6/WSM5 | WSM6/WSM5 | WSM6/WSM5 |
长波辐射 | RRTM | RRTM | RRTM |
短波辐射 | Goddard | Goddard | Goddard |
积云参数化 | Grell-Devenyi | Grell-Devenyi | 无 |
陆面过程 | RUC/Noah | RUC/Noah | RUC/Noah |
边界层过程 | YSU | YSU | YSU |
Fig. 10
The vertical profile of the relative humidity (unit: %), divergence field (unit: 10-5 s-1) with wind field (unit: m·s-1) and pseudo-equivalent potential temperature (unit: K) with vertical velocity (unit: m·s-1) of control tests (a, b, c) and reduced jet stream tests (d, e, f), where W*10 at 04:00 on July 19, 2018"
Fig. 11
The vertical profile of the relative humidity (unit: %), divergence field (unit: 10-5 s-1) with wind field (unit: m·s-1) and pseudo-equivalent potential temperature (unit: K) with vertical velocity (unit: m·s-1) of control tests (a, b, c) and reduced jet stream tests (d, e, f), where W*10 at 15:00 on June 4, 2017"
Tab. 2
Water vapor flux budget at each boundary /(kg·m-1·s-1)"
个例 | 急流类型 | 试验名称 | 东边界 | 西边界 | 东-西 | 南边界 | 北边界 | 南-北 | 净输入 |
---|---|---|---|---|---|---|---|---|---|
“7·18”过程23:00 | 偏南急流 | CTL1 | 38.77 | 15.64 | 23.13 | 102.66 | 44.99 | 57.67 | 34.54 |
EXP1 | 31.84 | 12.80 | 19.04 | 58.23 | 34.58 | 23.65 | 4.61 | ||
“6·04”过程13:00 | 东南急流 | CTL2 | -18.00 | 1.92 | -19.92 | 23.55 | 23.98 | -0.44 | 19.48 |
EXP2 | -13.22 | 8.08 | -21.30 | 11.99 | 15.19 | -3.20 | 18.10 |
[1] | 刘鸿波, 何明洋, 王斌, 等. 低空急流的研究进展与展望[J]. 气象学报, 2014, 72(2): 191-206. |
[ Liu Hongbo, He Mingyang, Wang Bin, et al. Advances in low-level jet research and future prospects[J]. Acta Meteorologica Sinica, 2014, 72(2): 191-206. ] | |
[2] |
Stensrud D J. Importance of low-level jets to climate: A review[J]. Journal of Climate, 1996, 9(8): 1698-1711.
doi: 10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2 |
[3] | Goualt J. Vents en altitude a fort Lamy(Tchad)[J]. Annales Physque du Globe de la France d’Outre-Mer, 1938, 5: 70-91. |
[4] |
Farquharson J S. The diurnal variation of wind over tropical Africa[J]. Quarterly Journal of The Royal Meteorological Society, 1939, 65(280): 165-184.
doi: 10.1002/qj.49706528004 |
[5] |
Means L L. On thunderstorm forecasting in the central United States[J]. Monthly Weather Review, 1952, 80(10): 165-189.
doi: 10.1175/1520-0493(1952)080<0165:OTFITC>2.0.CO;2 |
[6] |
Higgins R, Yao Y, Yarosh E, et al. Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States[J]. Journal of Climate, 1997, 10(3):481-507.
doi: 10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2 |
[7] | 翟国庆, 丁华君, 孙淑清, 等. 与低空急流相伴的暴雨天气诊断研究[J]. 大气科学, 1999, 23(1): 112-118. |
[ Zhai Guoqing, Ding Huajun, Sun Shuqing, et al. Physical characteristics of heavy rainfall associated with strong low level jet[J]. Chinese Journal of Atmospheric Sciences, 1999, 23(1): 112-118. ] | |
[8] | 何光碧, 陈静, 李川, 等. 低涡与急流对“04.9”川东暴雨影响的分析与数值模拟[J]. 高原气象, 2005, 24(6): 1012-1023. |
[ He Guangbi, Chen Jing, Li Chuan, et al. Analysis and numerical simulation for effects of vortex and jet stream on heavy rain in East Sichuan in September 2004[J]. Plateau Meteorology, 2005, 24(6): 1012-1023. ] | |
[9] |
Trier S B, Davis C A, Ahijevych D A, et al. Mechanisms supporting long lived episodes of propagating nocturnal convection within a 7-day WRF model simulation[J]. Journal of the Atmospheric Sciences, 2006, 63(10):2437-2461.
doi: 10.1175/JAS3768.1 |
[10] |
Tuttle J D, Davis C A. Corridors of warm season precipitation in the Central United States[J]. Monthly Weather Review, 2006, 134(9): 2297-2317.
doi: 10.1175/MWR3188.1 |
[11] |
Du Yu, Chen Guixing. Climatology of low-level jets and their impact on rainfall over southern China during the early summer rainy season[J]. Journal of Climate, 2019b, 32(24): 8813-8833.
doi: 10.1175/JCLI-D-19-0306.1 |
[12] | 梁红丽, 程正泉. 2014年两次相似路径影响云南台风降水差异成因分析[J]. 气象, 2017, 43(11): 1339-1353. |
[ Liang Hongli, Cheng Zhengquan. Cause analysis of precipitation difference between two typhoons influencing Yunnan along similar tracks in 2014[J]. Meteorological Monthly, 2017, 43(11): 1339-1353. ] | |
[13] | 郑婧, 许爱华, 孙素琴, 等. 高空西北气流下特大暴雨的预报误差分析及思考[J]. 气象, 2018, 44(1): 93-106. |
[ Zhen Jin, Xu Aihua, Sun Suqin, et al. Forecast error analysis of extremely heavy rain under high-level northwest flow[J]. Meteorological Monthly, 2018, 44(1): 93-106. ] | |
[14] | 陈健康, 赵玉春, 陈赛, 等. 闽中南罕见冬季锋前暴雨个例特征分析[J]. 气象, 2019, 45(2): 228-239. |
[ Chen Jiankang, Zhao Yuchun, Chen Sai, et al. Characteristic analysis on a winter prefrontal torrential rain in central and southern Fujian[J]. Meteorological Monthly, 2019, 45(2): 228-239. ] | |
[15] | 顾清源, 肖递祥, 黄楚惠, 等. 低空急流在副高西北侧连续性暴雨中的触发作用[J]. 气象, 2009, 35(4): 59-67. |
[ Gu Qingyuan, Xiao Dixiang, Huang Chuhui, et al. Trigger role of the low-level jet for the continuous rainstorm in the northwest side of subtropical high[J]. Meteorological Monthly, 2009, 35(4): 59-67. ] | |
[16] |
Zhao Yuchun. Numerical investigation of a localized extremely heavy rainfall event in complex topographic area during midsummer[J]. Atmospheric Research, 2012, 113(5): 22-39.
doi: 10.1016/j.atmosres.2012.04.018 |
[17] |
许朝斋, 林之光, 汪奕琮. 贺兰山区气候若干问题[J]. 地理学报, 1993, 48(2): 171-176.
doi: 10.11821/xb199302009 |
[ Xu Chaozhai, Lin Zhiguang, Wang Yizong. Some problems of Helan Mountain climate[J]. Acta Geographica Sinica, 1993, 48(2): 171-176. ]
doi: 10.11821/xb199302009 |
|
[18] | 陈豫英, 陈楠, 任小芳, 等. 贺兰山东麓罕见特大暴雨的预报偏差和可预报性分析[J]. 气象, 2018, 44(1): 159-169. |
[ Chen Yuying, Chen Nan, Ren Xiaofang, et al. Analysis on forecast deviation and predictability of a rare severe rainstorm along the eastern Helan Mountain[J]. Meteorological Monthly, 2018, 44(1): 159-169. ] | |
[19] | Chen Yuying, Li Jianping, Li Xin, et al. Spatio-temporal distribution of the rainstorm in the east side of the Helan Mountain and the possible causes of its variability[J]. Atmospheric Research, 2021, 252: 105469. 1-105469.16. |
[20] | 陈晓娟, 王咏青, 毛璐, 等. 贺兰山区两次极端暴雨动力作用数值模拟分析[J]. 干旱区研究, 2020, 37(3): 680-688. |
[ Chen Xiaojuan, Wang Yongqin, Mao Lu, et al. Numerical simulation analysis of the dynamic effects of terrain on two extreme rainstorms on Helan Mountain[J]. Arid Zone Research, 2020, 37(3): 680-688. ] | |
[21] |
王晖, 隆霄, 温晓培, 等. 2012年宁夏“7·29”大暴雨过程的数值模拟研究[J]. 高原气象, 2017, 36(1): 268-281.
doi: 10.7522/j.issn.1000-0534.2016.00017 |
[ Wang Hui, Long Xiao, Wen Xiaopei, et al. Numerical simulation studies on “2012·7·29” rainstorm process in Ningxia[J]. Plateau Meteorology, 2017, 36(1): 268-281. ]
doi: 10.7522/j.issn.1000-0534.2016.00017 |
|
[22] |
杨晓军, 叶培龙, 徐丽丽, 等. 一次青藏高原东北侧边坡强对流暴雨的中尺度对流系统演变特征[J]. 高原气象, 2022, 41(4): 839-849.
doi: 10.7522/j.issn.1000-0534.2021.00023 |
[ Yang Xiaojun, Ye Peilong, Xu Lili, et al. The variation characteristics of mesoscale convection system in a severe convective torrential rain over the northeast slope of the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2022, 41(4): 839-849. ]
doi: 10.7522/j.issn.1000-0534.2021.00023 |
|
[23] |
陈豫英, 苏洋, 杨银, 等. 贺兰山东麓极端暴雨的中尺度特征[J]. 高原气象, 2021, 40(1): 47-60.
doi: 10.7522/j.issn.1000-0534.2020.00012 |
[ Chen Yuying, Su Yang, Yang Yin, et al. The mesoscale characteristics of extreme rainstorm in the eastern region of Helan Mountain[J]. Plateau Meteorology, 2021, 40(1): 47-60. ]
doi: 10.7522/j.issn.1000-0534.2020.00012 |
|
[24] | 王智, 高坤, 翟国庆. 一次与西南低涡相联系的低空急流的数值研究[J]. 大气科学, 2003, 27(1): 75-85. |
[ Wang Zhi, Gao Kun, Zhai Guoqin. A mesoscale numerical simulation of low level jet related with the southwest vortex[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(1): 75-85. ] |
[1] | YAN Qing, LI Juyan, YIN Zhongdong, LIU Jinmiao, LIU Hongcai. Numerical simulation of the influence of typical shrub types on wind-sand flow field [J]. Arid Zone Research, 2023, 40(5): 785-797. |
[2] | ZHAO Yujuan, LU Yaqi, ZHANG Hongfen, ZHANG Kexin, ZHOU Zhongwen, Liu Ying. Comprehensive evaluation of atmospheric environmental parameters of short-duration rainstorm in Hedong region of Gansu Province based on fuzzy mathematics [J]. Arid Zone Research, 2023, 40(4): 543-551. |
[3] | ZHANG Tianyi, LIU Jie, YANG Zhiwei, WANG Bin, CHENG Qiulian. Numerical simulation of avalanche process in Aerxiangou, West Tianshan Mountains, based on air-ground cooperative investigation [J]. Arid Zone Research, 2023, 40(11): 1729-1743. |
[4] | XUE Chengjie, ZHANG Kecun, AN Zhishan, ZHANG Hongxue, PAN Jiapeng. Influences of railway viaducts on local wind power: A case study of the Shashangou Bridge used by the Dunge Railway [J]. Arid Zone Research, 2023, 40(10): 1678-1686. |
[5] | HUANG Xiaolu,LI Ruiqing,LI Linhui,LIN Hongjie,YAO Lebao. Various characteristics of the mesoscale convection system of a convective rainstorm in the Hetao area of Inner Mongolia [J]. Arid Zone Research, 2022, 39(6): 1728-1738. |
[6] | LI Chao,LONG Xiao,CAO Yiqing,WANG Siyi,HAN Zifei,WANG Hui. Circulation pattern and LLJ characteristics of 20 rainstorm events in the eastern region of the Helan Mountain [J]. Arid Zone Research, 2022, 39(6): 1753-1767. |
[7] | LIU Jinmiao,LI Juyan,YIN Zhongdong,GUAN Hanxiao,ZHANG Jiawei. Numerical simulation study on the influence of dry Alhagi camelorum on the wind-sand flow field [J]. Arid Zone Research, 2022, 39(5): 1514-1525. |
[8] | ZHOU Hong. A comparative study of ponded infiltration in a desert sandy soil based on multi-hydrological models [J]. Arid Zone Research, 2022, 39(1): 123-134. |
[9] | ZHANG Junxia,KONG Xiangwei,LIU Xinwei,WANG Yong. Spatial error characteristics of rainstorm forecasts of large-scale numerical model over the northeastern side of Tibetan Plateau [J]. Arid Zone Research, 2022, 39(1): 64-74. |
[10] | YANG Xia,ZHOU Hongkui,ZHAO Keming,XU Tingting. Analysis of the characteristics of the easterly low-level jet in Tarim [J]. Arid Zone Research, 2021, 38(5): 1216-1225. |
[11] | ZHANG Xingxin,ZHANG Kai,SHI Boyuan,CUI Baohong,ZHAO Liming. Numerical simulation of wind-blown sand flow field and formation mechanism of sand damage on road surface in shifting dune area [J]. Arid Zone Research, 2021, 38(4): 1184-1191. |
[12] | LIU Yihua,LI Hongmei,WEN Tingting,SHEN Hongyan,HANG Zhongquan,ZHU Baowen. Risk zoning of summer rainstorm disaster and its influence in Qaidam Basin [J]. Arid Zone Research, 2021, 38(3): 757-763. |
[13] | YANG Xia,ZHOU Hongkui,XU Tingting,HUA Ye. Comparative analysis of the fine characteristics of different rainstorms in southern Xinjiang during summer [J]. Arid Zone Research, 2021, 38(3): 747-756. |
[14] | WEI Qian,LONG Xiao,ZHAO Jianhua,HAN Zifei,WANG Siyi. Impact of boundary layer parameterization schemes on the simulation of a dust event over Northwest China [J]. Arid Zone Research, 2021, 38(1): 163-177. |
[15] | DING Ming-yue, WANG Li-li, XIN Yu, LIU Qiong, CHEN Yong-hang, ZHANG Guang-xin, YANG Lian-mei, LIANG Qian, HUANG Guan, LIU Tong-qiang. Diagnostic analysis and numerical simulation of a Central Asian vortex rainstorm based on CloudSat satellite data [J]. Arid Zone Research, 2020, 37(4): 936-946. |
|