Arid Zone Research ›› 2022, Vol. 39 ›› Issue (5): 1496-1503.doi: 10.13866/j.azr.2022.05.14
• Plant Ecology • Previous Articles Next Articles
XING Linmu(
),LI Qiang,GAO Yuanqianhui,LI Ning(
)
Received:2022-03-10
Revised:2022-04-28
Online:2022-09-15
Published:2022-10-25
Contact:
Ning LI
E-mail:1374921868@qq.com;lining772@163.com
XING Linmu,LI Qiang,GAO Yuanqianhui,LI Ning. Effect of different phosphorus supply levels on rhizosphere microbial functional diversity of Medicago sativa[J].Arid Zone Research, 2022, 39(5): 1496-1503.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
72 h diversity index of Medicago sativa rhizosphere microbial community"
| 磷水平/(kg·hm-2) | Shannon-Wiener指数 | Pielou指数 | Richness指数 | Simpson指数 |
|---|---|---|---|---|
| 0(P0) | 2.972±0.107a | 1.023±0.041b | 19.0±4.4ab | 0.942±0.004ab |
| 75(P1) | 2.976±0.090a | 1.227±0.072a | 12.0±2.6b | 0.940±0.007ab |
| 150(P2) | 2.964±0.062a | 1.070±0.040b | 16.3±2.5ab | 0.940±0.004ab |
| 300(P3) | 3.045±0.030a | 1.037±0.123b | 20±5.291a | 0.947±0.003a |
| 450(P4) | 2.872±0.143a | 1.090±0.082ab | 15±4.583ab | 0.931±0.011b |
Tab. 2
Initial eigenvalues and cumulative contribution of principal components"
| 成分 | 初始特征值 | 提取载荷平方和 | |||||
|---|---|---|---|---|---|---|---|
| 总计 | 方差百分比/% | 累计贡献率/% | 总计 | 方差百分比/% | 累计贡献率/% | ||
| 第一主成分 | 8.386 | 27.052 | 27.052 | 8.386 | 27.052 | 27.052 | |
| 第二主成分 | 5.581 | 18.004 | 45.056 | 5.581 | 18.004 | 45.056 | |
| 第三主成分 | 3.893 | 12.559 | 57.615 | 3.893 | 12.559 | 57.615 | |
| 第四主成分 | 2.482 | 8.005 | 65.620 | 2.482 | 8.005 | 65.620 | |
| 第五主成分 | 2.242 | 7.232 | 72.852 | 2.242 | 7.232 | 72.852 | |
| 第六主成分 | 1.916 | 6.181 | 79.033 | 1.916 | 6.181 | 79.033 | |
| 第七主成分 | 1.571 | 5.066 | 84.099 | 1.571 | 5.066 | 84.099 | |
| 第八主成分 | 1.110 | 3.581 | 87.679 | 1.110 | 3.581 | 87.679 | |
| 第九主成分 | 1.075 | 3.467 | 91.146 | 1.075 | 3.467 | 91.146 | |
| 第十主成分 | 0.915 | 2.951 | 94.098 | ||||
| 第十一主成分 | 0.816 | 2.631 | 96.729 | ||||
| 第十二主成分 | 0.451 | 1.455 | 98.184 | ||||
| 第十三主成分 | 0.399 | 1.286 | 99.470 | ||||
| 第十四主成分 | 0.164 | 0.530 | 100.000 | ||||
Tab. 3
Correlation coefficients of PC1, PC2 and categorical carbon sources under principal component analysis"
| 碳源类型 | 第一主成分PC1 | 第二主成分PC2 | |
|---|---|---|---|
| 羧酸类 | 丙酮酸甲酯 | 0.345 | -0.124 |
| γ-羟基丁酸 | 0.693 | -0.358 | |
| 衣康酸 | 0.439 | 0.677 | |
| α-丁酮酸 | 0.515 | 0.543 | |
| D-苹果酸 | 0.313 | 0.214 | |
| 多聚物类 | 吐温40 | 0.353 | -0.076 |
| 吐温80 | 0.666 | -0.417 | |
| α-环式糊精 | 0.807 | -0.137 | |
| 肝糖 | 0.418 | 0.765 | |
| 碳水化合物类 | D-纤维二糖 | 0.22 | -0.511 |
| α-D-乳糖 | 0.476 | -0.285 | |
| β-甲基-D-葡萄糖苷 | 0.077 | 0.307 | |
| D-木糖 | 0.67 | 0.397 | |
| i-赤藓糖醇 | 0.023 | 0.691 | |
| D-甘露醇 | 0.514 | -0.274 | |
| N-乙酰-D-葡萄糖胺 | 0.56 | -0.214 | |
| D-葡萄糖胺酸 | 0.483 | 0.21 | |
| α-D-葡萄糖-1-磷酸 | 0.675 | 0.421 | |
| D,L-α-磷酸甘油 | 0.561 | 0.518 | |
| D-半乳糖酸-γ-内脂 | 0.637 | 0.005 | |
| D-半乳糖醛酸 | 0.391 | -0.303 | |
| 酚酸类 | 2-羟基苯甲酸 | 0.561 | -0.375 |
| 4-羟基苯甲酸 | 0.187 | -0.626 | |
| 氨基酸类 | L-精氨酸 | 0.663 | -0.342 |
| L-天门冬酰胺 | 0.767 | -0.336 | |
| L-苯基丙氨酸 | 0.78 | -0.098 | |
| L-丝氨酸 | 0.1 | 0.646 | |
| L-苏氨酸 | 0.672 | -0.211 | |
| 甘氨酰-L-谷氨酸 | 0.563 | 0.602 | |
| 胺类 | 苯乙胺 | 0.338 | 0.478 |
| 腐胺 | -0.298 | 0.506 | |
| [1] | 王亚玲, 李晓芳, 师尚礼, 等. 紫花苜蓿生产性能构成因子分析与评价[J]. 中国草地学报, 2007, 29(5): 8-15. |
| [Wang Yaling, Li Xiaofang, Shi Shangli, et al. Analysis and evaluation of alfalfa production performance components of different alfalfa[J]. Chinese Journal of Grassland, 2007, 29(5): 8-15. ] | |
| [2] | 王文信. 中国苜蓿种植业发展的对策[J]. 北京农学院学报, 2022, 37(1): 117-120. |
| [Wang Wenxin. Countermeasures for the development of alfalfa planting industry in China[J]. Journal of Beijing University of Agricultural, 2022, 37(1): 117-120. ] | |
| [3] | 冯骁骋, 曾洁, 王伟, 等. 我国苜蓿产业发展现状及存在的问题[J]. 黑龙江畜牧兽医, 2018(2): 135-137. |
| [Feng Xiaopin, Zeng Jie, Wang Wei, et al. The present situation and existing problems of alfalfa industry development in our country[J]. Heilongjiang Animal Husbandry and Veterinary Medicine, 2018(2): 135-137. ] | |
| [4] | 陆太伟, 石雅飞, 李进文, 等. 磷肥对紫花苜蓿及其根瘤生长的影响研究[J]. 农业与技术, 2013, 33(11): 3-4. |
| [Lu Taiwei, Shi Yafei, Li Jinwen, et al. Study on the effect of phosphorus fertilizer on the growth of alfalfa and its root nodules[J]. Agriculture & Technology, 2013, 33(11): 3-4. ] | |
| [5] | 王园园, 张红香, 金成吉, 等. 磷肥对紫花苜蓿生产力影响的研究概述[J]. 中国农学通报, 2020, 36(35): 72-77. |
| [Wang Yuanyuan, Zhang Hongxiang, Jin Chengji, et al. Effects of phosophorus fertilizer on alfalfa[J]. Chinese Agronomy Bulletin, 2020, 36(35): 72-77. ] | |
| [6] | 王泽环. 不同磷水平对黄花苜蓿产量和品质的影响[D]. 呼和浩特: 内蒙古大学, 2008. |
| [Wang Zehuan. Effect of Phosphorus Levels on Forage Yield and Quality on Medicago Falcata[D]. Hohhot: Inner Mongolia University, 2008. ] | |
| [7] | 张杰. 施肥对紫花苜蓿生长特性和土壤肥力的影响研究[D]. 杨凌: 西北农林科技大学, 2007. |
| [Zhang Jie. Study on the Effect of Fertilization between Alfalfa Characteristics and Soil Fertility[D]. Yangling: Northwest A & F University, 2007. ] | |
| [8] | 蔺蕊. 北疆盐碱地苜蓿施肥参数与高产施肥初步研究[D]. 乌鲁木齐: 新疆农业大学, 2004. |
| [Lin Rui. Intial Study on Fertilization Method for High Yield of Alfalfa on Saline Land in North Xinjiang[D]. Urumqi: Xinjiang Agricultural University, 2004. ] | |
| [9] |
Wang P, Snijders R, Kohlen W, et al. Medicago SPX1 and SPX3 regulate phosphate homeostasis, mycorrhizal colonization, and arbuscule degradation[J]. The Plant Cell, 2021, 33(11): 3470-3486.
doi: 10.1093/plcell/koab206 |
| [10] | 田莉. 植物的磷素营养和土壤磷的生物有效性研究[J]. 农业与技术, 2015, 35(20): 22. |
| [Tian Li. Research on phosphorus nutrition of plants and biological effectiveness of soil phosphorus[J]. Agriculture and Technology, 2015, 35(20): 22. ] | |
| [11] | 张瑞福. 根际微生物: 农业绿色发展中大有作为的植物第二基因组[J]. 生物技术通报, 2020, 36(9): 1-2. |
| [Zhang Ruifu. Rhizosphere microorganisms: The second genome of plants with great potential in green agriculture[J]. Biotechnology Bulletin, 2020, 36(9): 1-2. ] | |
| [12] | 徐文静, 靳晓东, 杨秋生. 植物根际微生物的影响因素研究进展[J]. 河南农业科学, 2014, 43(5): 6-12. |
| [Xu Wenjing, Jin Xiaodong, Yang Qiusheng. Research progress on factors influencing plant rhizosphere microorganism[J]. Journey of Henan Agricultural Science, 2014, 43(5): 6-12. ] | |
| [13] | 覃潇敏, 郑毅, 汤利, 等. 施氮对间作条件下玉米、马铃薯根际微生物群落功能多样性的影响[J]. 农业资源与环境学报, 2015, 32(4): 354-362. |
| [Qin Xiaomin, Zheng Yi, Tang Li, et al. Effects of nitrogen application rates on rhizosphere microbial community functional diversity in maize and potato intercropping[J]. Journal of Agricultural Resources and Environment, 2015, 32(4): 354-362. ] | |
| [14] | 付家晖, 薛娜娜, 潘响亮. 博斯腾湖人工湿地中微生物群落空间分布特征[J]. 干旱区研究, 2020, 37(2): 487-495. |
| [Fu Jiahui, Xue Na’na, Pan Xiangliang. Spatial distribution of microbial communities in the wetlandsewage treatment system constructed on Bosten Lake[J]. Arid Zone Research, 2020, 37(2): 487-495. ] | |
| [15] | 樊晓刚, 金轲, 李兆君, 等. 不同施肥和耕作制度下土壤微生物多样性研究进展[J]. 植物营养与肥料学报, 2010, 16(3): 744-751. |
| [Fan Xiaogang, Jin Ke, Li Zhaojun, et al. Soil microbial diversity under different fertilization and tillage practices: A review[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(3): 744-751. ] | |
| [16] | 徐接亮, 张凤华, 李变变, 等. 施肥对油莎豆根际微生物群落特性的影响[J]. 干旱区研究, 2021, 38(6): 1741-1749. |
| [Xu Jieliang, Zhang Fenghua, Li Bianbian, et al. Effects of fertilization on characteristics of soil microbial community in the rihizosphere of Cyperus esculentus in the sandy area of Xinjiang[J]. Arid Zone Research, 2021, 38(6): 1741-1749. ] | |
| [17] |
Song C C, Liu D Y, Song Y Y, et al. Effect of exogenous phosphorus addition on soil respiration in Calamagrostis angustifolia freshwater marshes of Northeast China[J]. Atmospheric Environment, 2011, 45(7): 1-4.
doi: 10.1016/j.atmosenv.2010.09.021 |
| [18] | 单佩佩. 牡丹体内外磷循环和根际微生物种群构成对外源磷素的响应[D]. 泰安: 山东农业大学, 2016. |
| [Shan Peipei. Phosphorus Cycling in Peony Vivo and Vitor, Rhizosphere Microorganisms Constitute Response to Exogenous Phosphorus Removal[D]. Tai’an: Shandong Agricultural University, 2016. ] | |
| [19] | 湛钰, 高丹丹, 盛荣, 等. 磷差异性调控水稻根际nirK/nirS型反硝化菌组成与丰度[J]. 环境科学, 2019, 40(7): 3304-3312. |
| [Zhan Yu, Gao Dandan, Sheng Rong, et al. Differential responses of rhizospheric nirK-and nirS-type denitrifier communities to different phosphorus levels in paddy soil[J]. Environmental Science, 2019, 40(7): 3304-3312. ] | |
| [20] |
Cory C C, Alan R T. Nutrient additions to a tropicalrain forest drive substantial soil carbon dioxide losses to the atmosphere[J]. PNAS, 2006, 103(27): 10316-10321.
doi: 10.1073/pnas.0600989103 |
| [21] | 崔佩佩. 不同施肥对高粱生长及根际微生物功能多样性的影响[D]. 太原: 山西大学, 2018. |
| [Cui Peipei. Effects of Different Fertilization on the Growth of Sorghum and the Functional Diversity of Rhizosphere Microorganisms[D]. Taiyuan: Shanxi University, 2018. ] | |
| [22] | 陈波浪, 蒋平安, 盛建东. 磷肥对棉田土壤有效磷及土壤酶活性的影响[J]. 土壤通报, 2014, 45(1): 185-188. |
| [Chen Bolang, Jiang Ping’an, Sheng Jiandong. Effect of phosphorus fertilizers on soil available phosphorus and soil enzyme activity in cotton field[J]. Chinese Journal of Soil Science, 2014, 45(1): 185-188. ] | |
| [23] | 郑丽萍, 龙涛, 林玉锁, 等. Biolog-ECO解析有机氯农药污染场地土壤微生物群落功能多样性特征[J]. 应用与环境生物学报, 2013, 19(5): 759-765. |
| [Zheng Liping, Long Tao, Lin Yusuo, et al. Biolog-ECO analysis of the microbial community functional diversity in organochlorine contaminated soil[J]. Chinese Journal of Applied & Environmental Biology, 2013, 19(5): 759-765. ] | |
| [24] | 武俊男. 长期不同施肥对玉米根际微生物多样性及功能菌群的影响[D]. 长春: 吉林农业大学, 2018. |
| [Wu Junnan. Effects of Long-term Different Fertilization on Microbial Diversity and Functional Microflora in Corn Rhizosohere[D]. Changchun: Jilin Agricultural University, 2018. ] | |
| [25] | 张鹏, 李颖, 王业林, 等. 短脚锦鸡儿灌丛对植物群落和土壤微生物群落的促进效应研究[J]. 干旱区研究, 2021, 38(2): 421-428. |
| [Zhang Peng, Li Ying, Wang Yelin, et al. The positive effect of Caragana breviflora shrubs on plant communities and soil microbial communities in the inner Mongolia desert region[J]. Arid Zone Research, 2021, 38(2): 421-428. ] | |
| [26] | 高晓奇, 肖能文, 叶瑶, 等. 基于Biolog-ECO分析长庆油田土壤微生物群落功能多样性特征[J]. 应用与环境生物学报, 2014, 20(5): 913-918. |
| [Gao Xiaoqi, Xiao Nengwen, Ye Yao, et al. Analysis of microbial community functional diversity in the Changqing Oilfield based on Biology-ECO method[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(5): 913-918. ] | |
| [27] |
Yuan W, Yu L F, Zhang J C, et al. Relationship between vegetation restoration and soil microbial characteristics in degraded Karstregions: A case study[J]. Pedosphere, 2011, 21(1): 132-138.
doi: 10.1016/S1002-0160(10)60088-4 |
| [28] |
Garland J L. Analysis and interpretation of community-level physiological profiles in microbial ecology[J]. FEMS Microbiology Ecology, 1997, 24(4): 289-300.
doi: 10.1111/j.1574-6941.1997.tb00446.x |
| [29] |
Choi K, Dobbs F C. Comparison of two kinds of biolog micro-plate(GN and ECO) in their ability to distinguish among aquatic microbial communities[J]. Journal of Microbiological Methods, 1999, 36(3): 203-213.
pmid: 10379806 |
| [30] | 高明霞, 孙瑞, 崔全红, 等. 长期施用化肥对塿土微生物多样性的影响[J]. 植物营养与肥料学报, 2015, 21(6): 1572 -1580. |
| [Gao Mingxia, Sun Rui, Cui Quanhong, et al. Effects of long-term chemical fertilizer application on microbial diversity in anthropogenic loess soil[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1572-1580. ] | |
| [31] | 张锡洲, 李廷轩, 王永东. 植物生长环境与根系分泌物的关系[J]. 土壤通报, 2007, 38(4): 785-789. |
| [Zhang Xizhou, Li Tingxuan, Wang Yongdong. Relationship between growth environment and root exudates of plants: A review[J]. Chinese Journal of Soil Science, 2007, 38(4): 785-789. ] | |
| [32] | Tang X Y, Placella S A, Daydé F, et al. Phosphorus availability and microbial community in the rhizosphere of inter cropped cereal and legume along a P-fertilizer gradient[J]. Plant & Soil, 2016, 407(1-2): 1-16. |
| [33] | 罗汉东. 不同磷水平施肥对油茶生长及土壤环境动态影响[D]. 南昌: 江西农业大学, 2017. |
| [Luo Handong. Effect of Different Levels of Phosphorus Fertilization Growth and Soil Enviroment Dynamic of Camellia oleifera Abel[D]. Nanchang: Jiangxi Agricultural University, 2017. ] | |
| [34] | 廖朝选, 钱青青, 齐凯, 等. 施磷肥对大豆土壤微生物数量及酶活性的影响[J]. 贵阳学院学报(自然科学版), 2020, 15(3): 73-79. |
| [Liao Zhaoxuan, Qian Qingqing, Qi Kai, et al. Effect of phosphorus fertilizer on soil microbial groups and enzyme activity of different soybean varieties[J]. Journal of Guiyang University(Natural Science Edition), 2020, 15(3): 73-79. ] | |
| [35] | 张恩平, 田悦悦, 李猛, 等. 长期不同施肥对番茄根际土壤微生物功能多样性的影响[J]. 生态学报, 2018, 38(14): 5027-5036. |
| [Zhang Enping, Tian Yueyue, Li Meng, et al. Effects of various long-term fertilization regimes on soil microbial functional diversity in tomato rhizosphere soil[J]. Acta Ecologica Sinica, 2018, 38(14): 5027-5036. ] | |
| [36] | 刘俊杰. 磷浓度对大豆根际微生物群落结构及功能的影响[D]. 哈尔滨: 东北农业大学, 2009. |
| [Liu Junjie. Effect of Different Phosphorus Concentration on Microbial Community Structure and Function in Soybean Rhizosphere[D]. Harbin:Northeast Agricultural University, 2009. ] | |
| [37] | 张萌萌, 敖红, 张景云, 等. 建植年限对紫花苜蓿根际土壤微生物群落功能多样性的影响[J]. 草业科学, 2014, 31(5): 787-796. |
| [Zhang Mengmeng, Ao Hong, Zhang Jingyun, et al. Effects of planting years on functional diversity of carbon-metabolic microbial community in rhizosphere soils of alfalfa[J]. Grassland Science, 2014, 31(5): 787-796. ] |
| [1] | JING Mingbo,WANG Jincheng,ZHANG Wei,ZHOU Lihui,ZHANG Shaopeng. Comparison of phytoremediation effects of Medicago sativa and Coreopsis basalis on crude-oil-contaminated soil in eastern Gansu Province [J]. Arid Zone Research, 2022, 39(3): 853-862. |
| [2] |
LIU Jun, QI Guang-ping, KANG Yan-xia, MA Yan-lin, LI Zhi.
Effects of Soil Water Stress on Photosynthetic Characteristics and Biomass of Medicago sativa [J]. Arid Zone Research, 2019, 36(4): 893-900. |
|
||