[1] |
李宜浓, 周晓梅, 张乃莉, 等. 陆地生态系统混合凋落物分解研究进展[J]. 生态学报, 2016, 36(16): 4977-4987.
|
|
[Li Yinong, Zhou Xiaomei, Zhang Naili, et al. The research of mixed litter effects on litter decomposition in terrestrial ecosystems[J]. Acta Ecologica Sinica, 2016, 36(16): 4977-4987.]
|
[2] |
Zhang X Y, Wang W. Control of climate and litter quality on leaf litter decomposition in different climatic zones[J]. Journal of Plant Research, 2015, 128(5): 791.
doi: 10.1007/s10265-015-0743-6
pmid: 26135888
|
[3] |
Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus, 1992, 44(2): 81-99.
|
[4] |
王新源, 赵学勇, 李玉霖, 等. 环境因素对干旱半干旱区凋落物分解的影响研究进展[J]. 应用生态学报, 2013, 24(11): 3300-3310.
|
|
[Wang Xinyuan, Zhao Xueyong, Li Yulin, et al. Effects of environmental factors on litter decomposition in arid and semi-arid regions: A review[J]. Chinese Journal of Applied Ecology, 2013, 24(11): 3300-3310.]
pmid: 24564163
|
[5] |
赵哈林, 曲浩, 周瑞莲, 等. 沙埋对沙米幼苗生长、存活及光合蒸腾特性的影响[J]. 生态学报, 2013, 33(18): 5574-5579.
|
|
[Zhao Halin, Qu Hao, Zhou Ruilian, et al. Effects of sand burial on growth, survival, photosynthetic and transpiration properties of Agriophyllum squarrosum seedlings[J]. Acta Ecologica Sinica, 2013, 33(18): 5574-5579.]
doi: 10.5846/stxb
|
[6] |
Teraminami T, Nakashima A, Ominami M, et al. Effects of sand burial depth on the root system of Salix cheilophila seedlings in Mu Us Sandy Land, Inner Mongolia, China[J]. Landscape and Ecological Engineering, 2013, 9(2): 249-257.
doi: 10.1007/s11355-012-0205-4
|
[7] |
Vleeshouwers L M. Modelling the effect of temperature, soil penetration resistance, burial depth and seed weight on pre-emergence growth of weeds[J]. Annals of Botany, 1997, 79(5): 553-563.
doi: 10.1006/anbo/79.5.553
|
[8] |
Danger M, Cornut J, Elger A, et al. Effects of burial on leaf litter quality, microbial conditioning and palatability to three shredder taxa: Leaf litter burial and palatability[J]. Freshwater Biology, 2012, 57(5): 1017-1030.
doi: 10.1111/fwb.2012.57.issue-5
|
[9] |
Vivanco L, Austin A T. Intrinsic effects of species on leaf litter and root decomposition: A comparison of temperate grasses from North and South America[J]. Oecologia, 2006, 150(1): 97-107.
pmid: 16917779
|
[10] |
Austin A T, Araujo P I, Leva P E. Interaction of position, litter type, and water pulses on decomposition of grasses from the semiarid patagonian steppe[J]. Ecology, 2009, 90(9): 2642-2647.
pmid: 19769141
|
[11] |
范琳杰, 李成道, 李向义, 等. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153.
|
|
[Fan Linjie, Li Chengdao, Li Xiangyi, et al. Effects of sand burial on litter decomposition rate and salt content dynamics in an extremely arid region[J]. Chinese Journal of Plant Ecology, 2021, 45(2): 144-153.]
doi: 10.17521/cjpe.2020.0273
|
[12] |
李海涛, 于贵瑞, 李家永, 等. 井冈山森林凋落物分解动态及磷、钾释放速率[J]. 应用生态学报, 2007, 18(2): 233-240.
|
|
[Li Haitao, Yu Guirui, Li Jiayong, et al. Dynamics of litter decomposition and phosphorus and potassium release in Jinggang Mountain region of Jiangxi Province, China[J]. Chinese Journal of Applied Ecology, 2007, 18(2): 233-240.]
pmid: 17450720
|
[13] |
齐斐斐, 买买提依明·买买提艾力, 霍文, 等. 塔克拉玛干沙漠腹地地表辐射和能量平衡及小气候特征[J]. 干旱气象, 2020, 38(1): 32-39.
|
|
[Qi Feifei, Maimaitiaili, Maimaitiyiming, Huo Wen, et al. Characteristics of surface radiation and energy balance and microclimate in the hinterland of Taklimakan Desert[J]. Journal of Arid Meteorology, 2020, 38(1): 32-39.]
|
[14] |
Lei J, Li S, Fan D, et al. Classification and regionalization of the forming environment of windblown sand disasters along the Tarim Desert Highway[J]. Science Bulletin, 2008, 53(S2): 1-7.
|
[15] |
Liu Y, Ali M, Huo W, et al. Estimation of the land surface emissivity in the hinterland of Taklimakan Desert[J]. Journal of Mountain Science, 2014, 11(6): 1543-1551.
doi: 10.1007/s11629-014-3090-5
|
[16] |
李丙文, 张洪江, 邱永志, 等. 咸水灌溉对塔里木沙漠公路防护林植物生长的影响[J]. 干旱区地理, 2011, 34(2): 215-221.
|
|
[Li Bingwen, Zhang Hongjiang, Qiu Yongzhi, et al. Effects of saline water irrigation on plants growth of the Tarim Desert Highway shelter-belt[J]. Arid Land Geography, 2011, 34(2): 215-221.]
|
[17] |
Olson J S. Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecology, 1963, 44(2): 322-331.
doi: 10.2307/1932179
|
[18] |
李巧玲, 曾辉. 美国南卡罗来纳州森林湿地十种典型植物凋落叶的分解特征[J]. 生态学报, 2017, 37(7): 2342-2351.
|
|
[Li Qiaoling, Zeng Hui. Leaf litter decomposition of ten plant species in a forested wetland in South Carolina, USA[J]. Acta Ecologica Sinica, 2017, 37(7): 2342-2351.]
|
[19] |
Zhang J G, Xu X W, Zhao Y, et al. Effect of shifting sand burial on soil evaporation and moisture-salt distribution in a hyper-arid desert[J]. Environmental Earth Sciences, 2016, 75(21): 1417.
doi: 10.1007/s12665-016-6184-2
|
[20] |
Zhang X M, Wang Y D, Zhao Y, et al. Litter decomposition and nutrient dynamics of three woody halophytes in the Taklimakan Desert Highway shelterbelt[J]. Arid Land Research and Management, 2017, 31(3): 335-351.
doi: 10.1080/15324982.2017.1300613
|
[21] |
Qu H, Zhao X, Wang S, et al. Abiotic factors affect leaf litter mass loss more strongly than initial litter traits under sand burial conditions[J]. Catena, 2021, 196: 104900.
doi: 10.1016/j.catena.2020.104900
|
[22] |
Liu G F, William K, Cornwell, et al. Decomposition of 51 semidesert species from wide-ranging phylogeny is faster in standing and sand-buried than in surface leaf litters: Implications for carbon and nutrient dynamics[J]. Plant & Soil, 2015, 396(1-2): 175-187.
|
[23] |
范琳杰, 李向义, 李成道, 等. 极端干旱区花花柴(Karelinia caspia)和胡杨(Populus euphratica)叶凋落物分解和养分释放特征[J]. 干旱区研究, 2021, 38(2): 479-486.
|
|
[Fan Linjie, Li Xiangyi, Li Chengdao, et al. Decomposition and nutrient release characteristics of Karelinia caspia and Populus euphratica leaf litters in extreme arid regions[J]. Arid Zone Research, 2021, 38(2): 479-486.]
|
[24] |
Uselman S M, Snyder K A, Blank R R, et al. UVB exposure does not accelerate rates of litter decomposition in a semi-arid riparian ecosystem[J]. Soil Biology and Biochemistry, 2011, 43(6): 1254-1265.
doi: 10.1016/j.soilbio.2011.02.016
|
[25] |
Wu Z D, Wang Y X, Cai Z F, et al. Amount and decomposition characteristics of litters in citrus orchard in Fuzhou, China[J]. Journal of Ecology and Rural Environment, 2010, 26(3): 231-234.
|
[26] |
周丽, 李彦, 唐立松, 等. 光降解在凋落物分解中的作用[J]. 生态学杂志, 2011, 30(9): 2045-2052.
|
|
[Zhou Li, Li Yan, Tang Lisong, et al. Roles of photodegradation in litter decomposition[J]. Chinese Journal of Ecology, 2011, 30(9): 2045-2052.]
|
[27] |
Parton W, Silver W L, Burke I C, et al. Global-scale similarities in nitrogen release patterns during long-term decomposition[J]. Science, Washington: Amer Assoc Advancement Science, 2007, 315(5810): 361-364.
|
[28] |
Taylor B R, Parkinson D, Parsons W F J. Nitrogen and lignin content as predictors of litter decay rates: A microcosm test[J]. Ecology, 1989, 70(1): 97-104.
doi: 10.2307/1938416
|
[29] |
Bray S R, Kitajima K, Mack M C. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate[J]. Soil Biology and Biochemistry, 2012, 49: 30-37.
doi: 10.1016/j.soilbio.2012.02.009
|
[30] |
杨晶晶, 周正立, 吕瑞恒, 等. 干旱生境下3种植物叶凋落物分解动态特征[J]. 干旱区研究, 2019, 36(4): 916-923.
|
|
[Yang Jingjing, Zhou Zhengli, Lv Ruiheng, et al. Dynamic decomposition of foliar litters of three plant species in arid habitats[J]. Arid Zone Research, 2019, 36(4): 916-923.]
|
[31] |
Sylvain C, Jean W, Olaf B, et al. Litter composition rather than plant presence affects decomposition of tropical litter mixtures[J]. Plant and Soil, 2011, 343(1-2): 273-286.
doi: 10.1007/s11104-011-0717-y
|