Arid Zone Research ›› 2024, Vol. 41 ›› Issue (10): 1789-1796.doi: 10.13866/j.azr.2024.10.16

• Agricultural Ecology • Previous Articles    

Effects of different land-use methods on the organic carbon composition and soil microbial biomass carbon of farmland soil

LI Na(), XIN Huinan, LAI Ning, LI Yongfu, LYU Caixia, GENG Qinglong, DUAN Jingjing, CHEN Shuhuang()   

  1. Institute of Soil Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China
  • Received:2024-01-05 Revised:2024-08-06 Online:2024-10-15 Published:2024-10-14
  • Contact: CHEN Shuhuang E-mail:lina@xaas.ac.cn;chensh66@163.com

Abstract:

Investigating the content characteristics of organic carbon components and microbial biomass carbon in farmland soil under different land-use methods is of considerable significance for guiding the rational utilization and management of soil resources in the Ili River Valley. By combining field investigations, sample collection, indoor analysis, and geostatistics, this study explored the content characteristics of soil SOC, POC, DOC, LFOC, EOC, and MBC in five land-use types, including dryland, irrigated land, paddy field, orchard, and abandoned land in the Ili River Valley. This study compared and analyzed the effects of land-use changes on soil organic carbon components and microbial biomass carbon in farmland in the Ili River Valley. Results showed that the contents of TN, AN, AP, and AK in soil were in the order of paddy field>irrigated land>dryland>orchard>fallow land. The nutrient content of paddy soil was significantly higher than that of the other four land-use types. The soil SOC content showed significant differences, primarily reflected in paddy fields (25.62 g·kg-1)>dryland (13.80 g·kg-1)>irrigated land (12.19 g·kg-1)>orchards (11.58 g·kg-1)>abandoned land (8.81 g·kg-1), and all reached a significant difference level (P<0.05). The contents of soil SOC, DOC, POC, LFOC, and MBC showed the characteristics of paddy field>dryland>irrigated land>orchard>abandoned land, with significant differences. The EOC content showed the characteristics of paddy field>irrigated land>dryland>orchard>abandoned land, with significant differences. The contents of SOC, DOC, POC, LFOC, MBC, and EOC in paddy soil were significantly higher than those in the other four land-use types. A highly significant positive correlation was detected between soil SOC and POC, LFOC, and DOC in the five land-use types, with the correlation coefficients being 0.622, 0.36, and 0.489, respectively (P<0.01), indicating that soil SOC content is an important factor affecting soil particulate organic carbon, light organic carbon, and soluble organic carbon contents.

Key words: land use mode, farmland soil, organic carbon fraction, microbial biomass carbon, Ili River Valley