Arid Zone Research ›› 2024, Vol. 41 ›› Issue (10): 1685-1698.doi: 10.13866/j.azr.2024.10.07
• Land and Water Resources • Previous Articles Next Articles
ZHAO Wenlong1,2(), LYU Haishen1,2(), ZHU Yonghua1,2, LIU Han1,2, WU Zhuojun1,2
Received:
2024-03-29
Revised:
2024-06-27
Online:
2024-10-15
Published:
2024-10-14
Contact:
LYU Haishen
E-mail:221301010052@hhu.edu.cn;lvhaishen@hhu.edu.cn
ZHAO Wenlong, LYU Haishen, ZHU Yonghua, LIU Han, WU Zhuojun. Simulation of rainfall and snowmelt runoff on the daily scale of the Kuwei Station in the Irtysh River[J].Arid Zone Research, 2024, 41(10): 1685-1698.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 4
Evaluation indicators of simulation results"
时期 | 年份 | SRM | SRM+LSTM | |||
---|---|---|---|---|---|---|
R2 | NSE | R2 | NSE | |||
积雪退水期 | 率定期 | 2007年 | 0.278 | 0.266 | 0.922 | 0.878 |
2008年 | 0.815 | <0 | 0.925 | 0.902 | ||
融雪降水产流期 | 验证期 | 2009年 | 0.689 | <0 | 0.817 | 0.555 |
率定期 | 2007年 | 0.160 | <0 | 0.441 | 0.422 | |
2008年 | 0.496 | <0 | 0.834 | 0.814 | ||
降水产流期 | 验证期 | 2009年 | 0.334 | 0.082 | 0.314 | 0.277 |
率定期 | 2007年 | 0.073 | <0 | 0.815 | 0.646 | |
2008年 | 0.186 | <0 | 0.513 | 0.468 | ||
融雪降水产流期 | 验证期 | 2009年 | 0.420 | <0 | 0.753 | 0.749 |
验证期 | 2023年 | 0.494 | 0.060 | 0.834 | 0.628 |
[1] | Wu Xuejiao, Zhang Wei, Li Hongyi, et al. Analysis of seasonal snowmelt contribution using a distributed energy balance model for a river basin in the Altai Mountains of northwestern China[J]. Hydrological Processes, 2021, 35(3): e14046. |
[2] | 杨金明, 李诚志, 房世峰, 等. 新疆地区季节性融雪洪水模拟与预报研究[J]. 新疆大学学报(自然科学版), 2019, 36(1): 80-88. |
[Yang Jinming, Li Chengzhi, Fang Shifeng, et al. Simulation and forecasting of seasonal snowmelt flood in Xinjiang[J]. Journal of Xinjiang University (Natural Science Edition), 2019, 36(1): 80-88.] | |
[3] |
余其鹰, 胡彩虹, 白云岗, 等. 新疆洪水预报预警中融雪径流模型应用进展[J]. 干旱区地理, 2023, 46(12): 1951-1962.
doi: 10.12118/j.issn.1000-6060.2023.153 |
[Yu Qiying, Hu Caihong, Bai Yungang, et al. Progress in the application of snowmelt runoff model in flood forecasting and early warning in Xinjiang[J]. Arid Land Geography, 2023, 46(12): 1951-1962.]
doi: 10.12118/j.issn.1000-6060.2023.153 |
|
[4] |
陈庭兴, 吕海深, 朱永华. 基于GEV分布的西营河流域洪水特性分析[J]. 干旱区研究, 2021, 38(6): 1563-1569.
doi: 10.13866/j.azr.2021.06.08 |
[Chen Tingxing, Lyu Haishen, Zhu Yonghua. Analysis of flood characteristics in Xiying River Basin based on GEV distribution[J]. Arid Zone Research, 2021, 38(6): 1563-1569.]
doi: 10.13866/j.azr.2021.06.08 |
|
[5] | 郭晨煜, 吕海深, 朱永华, 等. WRF-Hydro模型参数在河西内陆河流域的敏感性分析[J]. 水利水电科技进展, 2023, 43(6): 120-127. |
[Guo Chenyu, Lyu Haishen, Zhu Yonghua, et al. Sensitivity analysis of WRF-Hydro model parameters in hexi inland river basin[J]. Progress in Water Resources and Hydropower Science and Technology, 2023, 43(6): 120-127.] | |
[6] |
孙铭悦, 吕海深, 朱永华, 等. 2套气象数据在资料缺乏地区的适用性评估——以呼图壁河流域为例[J]. 干旱区研究, 2022, 39(1): 94-103.
doi: 10.13866/j.azr.2022.01.10 |
[Sun Mingyue, Lyu Haishen, Zhu Yonghua, et al. Evaluation of the applicability of two sets of meteorological data in areas lacking data: A case study of Hutubi River Basin[J]. Arid Zone Research, 2022, 39(1): 94-103.]
doi: 10.13866/j.azr.2022.01.10 |
|
[7] |
张梅洁, 吕海深, 刘娣, 等. 耦合融雪的新安江模型在干旱区径流模拟研究[J]. 干旱区研究, 2022, 39(2): 379-387.
doi: 10.13866/j.azr.2022.02.05 |
[Zhang Meijie, Lyu Haishen, Liu Di, et al. Runoff simulation of Xin’anjiang model coupled with snow melting in arid region[J]. Arid Zone Research, 2022, 39(2): 379-387.]
doi: 10.13866/j.azr.2022.02.05 |
|
[8] | 李彬权, 荣伟光, 吴亚琪, 等. 大渡河流域融雪期划分方法研究[J]. 水电能源科学, 2023, 41(5): 38-42. |
[Li Binquan, Rong Weiguang, Wu Yaqi, et al. Study on the division method of snowmelt period in Dadu River Basin[J]. Hydropower Energy Science, 2023, 41(5): 38-42.] | |
[9] | 杨春辉, 张玥, 李峰平. 寒区春汛产流预报方法研究[J]. 中国农村水利水电, 2019(5): 43-46. |
[Yang Chunhui, Zhang Yue, Li Fengping. Research on spring flood runoff forecasting method in cold regions[J]. China Rural Water Resources and Hydropower, 2019(5): 43-46.] | |
[10] | 田琳. 中温带地区春季融雪径流研究[D]. 长春: 吉林大学, 2019. |
[Tian Lin. Study on Spring Snowmelt Runoff in the Middle Temperate Zone[D]. Changchun: Jilin University, 2019.] | |
[11] | 邢贞相, 金超群, 纪毅, 等. 基于SWAT模型与Copula修正的融雪径流模拟[J]. 东北农业大学学报, 2020, 51(6): 79-87. |
[Xing Zhenxiang, Jin Chaoqun, Ji Yi, et al. Simulation of snowmelt runoff based on SWAT model and Copula modification[J]. Journal of Northeast Agricultural University, 2020, 51(6): 79-87.] | |
[12] | 汪伟, 方秀琴, 杜晓彤, 等. 基于VIC模型的柳江流域分布式水文模拟与应用[J]. 水土保持研究, 2020, 27(3): 328-335. |
[Wang Wei, Fang Xiuqin, Du Xiaotong, et al. Distributed hydrological simulation and application of Liujiang River Basin based on VIC model[J]. Soil and Water Conservation Research, 2020, 27(3): 328-335.] | |
[13] | 陈心池, 张利平, 闪丽洁, 等. 新疆山区中小河流洪水预报模型及其应用[J]. 干旱区研究, 2017, 34(6): 1426-1435. |
[Chen Xinchi, Zhang Liping, Shan Lijie, et al. Flood forecasting model for small and medium-sized rivers in mountainous areas of Xinjiang and its application[J]. Arid Zone Research, 2017, 34(6): 1426-1435.] | |
[14] | Martinec J. Snowmelt-runoff model for stream flow forecasts[J]. Hydrology Research, 1975, 6(3): 145-154. |
[15] | Siemens K, Dibike Y, Shrestha R R, et al. Runoff projection from an alpine watershed in western Canada: Application of a snowmelt runoff model[J]. Water, 2021, 13(9): 1199. |
[16] | 谢顺平, 都金康, 冯学智, 等. 融雪径流模型参数渐进式优化率定方法[J]. 南京大学学报(自然科学), 2015, 51(5): 1005-1013. |
[Xie Shunping, Du Jinkang, Feng Xuezhi, et al. Parameter progressive optimization calibration method for snowmelt runoff model[J]. Journal of Nanjing University (Natural Science), 2015, 51(5): 1005-1013.] | |
[17] | Sharma T P P, Zhang Jiahua, Khanal N R, et al. Assimilation of snowmelt runoff model (SRM) using satellite remote sensing data in Budhi Gandaki River Basin, Nepal[J]. Remote Sensing, 2020, 12(12): 1951. |
[18] | 刘攀, 郑雅莲, 谢康, 等. 水文水资源领域深度学习研究进展综述[J]. 人民长江, 2021, 52(10): 76-83. |
[Liu Pan, Zheng Yalian, Xie Kang, et al. Review of research progress on deep learning in the field of hydrology and water resources[J]. People’s Yangtze River, 2021, 52(10): 76-83.] | |
[19] | Xiang Zhongrun, Yan Jun, Demir I. A rainfall-runoff model with LSTM-based sequence-to-sequence learning[J]. Water resources research, 2020, 56(1): e2019WR025326. |
[20] | Garg N, Negi S, Nagar R, et al. Multivariate multi-step LSTM model for flood runoff prediction: A case study on the Godavari River Basin in India[J]. Journal of Water and Climate Change, 2023, 14(10): 3635-3647. |
[21] | 殷兆凯, 廖卫红, 王若佳, 等. 基于长短时记忆神经网络(LSTM)的降雨径流模拟及预报[J]. 南水北调与水利科技, 2019, 17(6): 1-9. |
[Yin Zhaokai, Liao Weihong, Wang Ruojia, et al. Rainfall runoff simulation and forecast based on long short-term memory neural network (LSTM)[J]. South-to-North Water Diversion and Water Science and Technology, 2019, 17(6): 1-9.] | |
[22] | 殷仕明, 徐炜, 熊一橙, 等. 基于迁移学习的长短时记忆神经网络水文模型[J]. 水力发电学报, 2022, 41(6): 53-64. |
[Yin Shiming, Xu Wei, Xiong Yicheng, et al. Hydrological model of long short-term memory neural network based on transfer learning[J]. Journal of Hydroelectric Engineering, 2022, 41(6): 53-64.] | |
[23] | Cui Zhen, Zhou Yanlai, Guo Shenglian, et al. A novel hybrid XAJ-LSTM model for multi-step-ahead flood forecasting[J]. Hydrology Research, 2021, 52(6): 1436-1454. |
[24] | Chen Shengyue, Huang Jinliang, Huang Jr-Chuang. Improving daily streamflow simulations for data-scarce watersheds using the coupled SWAT-LSTM approach[J]. Journal of Hydrology, 2023, 622: 129734. |
[25] | Xiao Qintai, Zhou Li, Xiang Xin, et al. Integration of hydrological model and time series model for improving the runoff simulation: A case study on BTOP model in Zhou River Basin, China[J]. Applied Sciences, 2022, 12(14): 6883. |
[26] |
高黎明, 张乐乐, 沈永平, 等. ERA-Interim和CMFD气象驱动数据在新疆额尔齐斯河流域的适用性评价[J]. 冰川冻土, 2022, 44(1): 179-187.
doi: 10.7522/j.issn.1000-0240.2022.0029 |
[Gao Liming, Zhang Lele, Shen Yongping, et al. Applicability of ERA-Interim and CMFD weather-driven data in the Irtysh River Basin of Xinjiang[J]. Glaciology and Geocryology, 2022, 44(1): 179-187.] | |
[27] | 郝晓华, 赵琴, 纪文政, 等. 1980—2020年AVHRR中国积雪物候数据集[J]. 中国科学数据(中英文网络版), 2022, 7(3): 50-59. |
[Hao Xiaohua, Zhao Qin, Ji Wenzheng, et al. AVHRR snow phenology dataset in China from 1980 to 2020[J]. Chinese Scientific Data Online, 2022, 7(3): 50-59.] | |
[28] | He Jie, Yang Kun, Tang Wenjun, et al. The first high-resolution meteorological forcing dataset for land process studies over China[J]. Scientific Data, 2020, 7(1): 25. |
[29] | Chen Hongju, Yang Jianping, Ding Yongjian, et al. Simulation of daily snow depth data in China based on the NEX-GDDP[J]. Water, 2021, 13(24): 3599. |
[30] |
Hochreiter Sepp, Schmidhuber Jurgen. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276 |
[31] | Jain A K, Murty M N, Flynn P J. Data clustering: A review[J]. ACM Computing Surveys (CSUR), 1999, 31(3): 264-323. |
[32] | 金浩宇, 鞠琴. SRM模型在尼洋河流域的应用研究[J]. 水文, 2019, 39(5): 19-24. |
[Jin Haoyu, Ju Qin. Application of SRM model in Niyang River Basin[J]. Journal of China Hydrology, 2019, 39(5): 19-24.] | |
[33] |
张伟, 沈永平, 贺建桥, 等. 额尔齐斯河源区森林对春季融雪过程的影响评估[J]. 冰川冻土, 2014, 36(5): 1260-1270.
doi: 10.7522/j.issn.1000-0240.2014.0151 |
[Zhang Wei, Shen Yongping, He Jianqiao, et al. Impact assessment of forests on spring snowmelt process in the headwaters of the Irtysh River[J]. Glaciology and Geocryology, 2014, 36(5): 1260-1270.] | |
[34] | 李巧媛, 谢自楚. 高原区气温垂直递减率的分布及其特点分析——以青藏高原及其周边地区为例[J]. 石河子大学学报(自然科学版), 2006, 24(6): 719-723. |
[Li Qiaoyuan, Xie Zichu. Distribution and characteristics of vertical temperature decline rate in plateau region: A case study of the Tibetan Plateau and its surrounding areas[J]. Journal of Shihezi University (Natural Science Edition), 2006, 24(6): 719-723.] |
|