Arid Zone Research ›› 2023, Vol. 40 ›› Issue (12): 1918-1930.doi: 10.13866/j.azr.2023.12.05
• Land and Water Resources • Previous Articles Next Articles
JIA Qiong1(),SONG Xiaoyu1(),SONG Shuhong2,LIU Xiaodi1,QIN Lin1,LIU Hui1
Received:
2023-09-21
Revised:
2023-10-20
Online:
2023-12-15
Published:
2023-12-18
JIA Qiong, SONG Xiaoyu, SONG Shuhong, LIU Xiaodi, QIN Lin, LIU Hui. Dynamic prediction and regulation of the water resource carrying capacity in the Guanzhong region based on the LMDI-SD coupling model[J].Arid Zone Research, 2023, 40(12): 1918-1930.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 3
Validity test of SD model of water resources carrying capacity in Guanzhong region"
年份 | 人口总量 | 工业增加值 | 用水总量 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
S/104 人 | H/104 人 | E/% | S/108 元 | H/108 元 | E/% | S/108 m3 | H/108 m3 | E/% | |||
2010 | 2322 | 2322 | 0.00 | 2428 | 2428 | 0.00 | 48.87 | 48.75 | 0.26 | ||
2011 | 2330 | 2330 | 0.00 | 3067 | 3065 | 0.08 | 50.85 | 50.32 | 1.06 | ||
2012 | 2338 | 2338 | 0.01 | 3673 | 3659 | 0.37 | 51.92 | 51.33 | 1.14 | ||
2013 | 2345 | 2345 | 0.01 | 4034 | 4097 | 1.53 | 52.11 | 51.79 | 0.60 | ||
2014 | 2352 | 2353 | 0.02 | 4134 | 4181 | 1.13 | 52.50 | 52.88 | 0.71 | ||
2015 | 2364 | 2365 | 0.02 | 4207 | 4267 | 1.42 | 53.52 | 53.81 | 0.53 | ||
2016 | 2380 | 2381 | 0.04 | 4268 | 4243 | 0.58 | 52.28 | 53.18 | 1.68 | ||
2017 | 2400 | 2399 | 0.04 | 4699 | 4670 | 0.63 | 54.10 | 54.47 | 0.68 | ||
2018 | 2430 | 2427 | 0.13 | 4820 | 4846 | 0.52 | 52.99 | 52.99 | 0.00 | ||
2019 | 2467 | 2438 | 1.18 | 4769 | 4704 | 1.39 | 51.56 | 51.50 | 0.12 | ||
2020 | 2560 | 2610 | 1.92 | 4342 | 4326 | 0.37 | 46.70 | 47.20 | 1.06 | ||
2021 | 2570 | 2640 | 2.65 | 5144 | 5230 | 1.64 | 48.16 | 48.53 | 0.76 |
Tab. 5
Prediction results of water resources carrying capacity model in Guanzhong region under the current development model"
指标 | 年份 | 西安 | 铜川 | 宝鸡 | 咸阳 | 渭南 | 关中 |
---|---|---|---|---|---|---|---|
人口/104人 | 2025 | 1245 | 77 | 372 | 440 | 517 | 2650 |
2030 | 1402 | 75 | 364 | 444 | 520 | 2805 | |
2035 | 1576 | 74 | 354 | 447 | 524 | 2975 | |
城镇化率 | 2025 | 0.77 | 0.70 | 0.65 | 0.60 | 0.60 | 0.66 |
2030 | 0.79 | 0.72 | 0.68 | 0.65 | 0.63 | 0.69 | |
2035 | 0.80 | 0.73 | 0.70 | 0.70 | 0.65 | 0.72 | |
工业增加值/108元 | 2025 | 3020 | 206 | 1934 | 985 | 984 | 7129 |
2030 | 4453 | 238 | 3115 | 1448 | 1513 | 10767 | |
2035 | 6506 | 276 | 5017 | 2127 | 2328 | 16255 | |
可供水量/108 m3 | 2025 | 22.63 | 1.02 | 8.12 | 11.16 | 15.43 | 58.36 |
2030 | 24.86 | 1.08 | 8.23 | 11.48 | 15.89 | 61.53 | |
2035 | 27.56 | 1.15 | 8.35 | 11.84 | 16.60 | 65.51 | |
用水总量/108 m3 | 2025 | 24.52 | 1.06 | 8.14 | 9.20 | 15.02 | 57.93 |
2030 | 30.38 | 1.18 | 8.81 | 10.02 | 16.34 | 66.73 | |
2035 | 38.00 | 1.34 | 9.93 | 11.12 | 19.05 | 79.44 | |
水资源承载指数 | 2025 | 1.08 | 1.04 | 1.00 | 0.82 | 0.97 | 0.99 |
2030 | 1.22 | 1.09 | 1.07 | 0.87 | 1.03 | 1.08 | |
2035 | 1.38 | 1.17 | 1.19 | 0.94 | 1.15 | 1.21 |
Tab. 7
Control test design of water resources carrying capacity in Guanzhong region"
水平 | 调控倍比 | ||||
---|---|---|---|---|---|
单位面积农田灌溉用水量/(m3·hm-2) | 工业增加值增加率/% | 城镇居民生活用水定额/(L·人-1·d-1) | 农村居民生活用水定额/((L·人-1·d-1) | 人均生态用水量/(m3·人-1) | |
1 | -0.02 | -0.18 | -0.06 | -0.05 | -0.07 |
2 | -0.04 | -0.36 | -0.12 | -0.09 | -0.13 |
3 | -0.06 | -0.54 | -0.18 | -0.14 | -0.20 |
4 | -0.08 | -0.72 | -0.24 | -0.18 | -0.27 |
Tab. 8
Orthogonal test design of water resources carrying capacity regulation scheme in Guanzhong region"
编号 | 单位面积农田灌溉用水量/(m3·hm-2) | 工业增加值增加率/% | 城镇居民生活用水定额/(L·人-1·d-1) | 农村居民生活用水定额/((L·人-1·d-1) | 人均生态用水量/(m3·人-1) |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 | 2 | 2 |
3 | 1 | 3 | 3 | 3 | 3 |
4 | 1 | 4 | 4 | 4 | 4 |
5 | 2 | 1 | 2 | 3 | 4 |
6 | 2 | 2 | 1 | 4 | 3 |
7 | 2 | 3 | 4 | 1 | 2 |
8 | 2 | 4 | 3 | 2 | 1 |
9 | 3 | 1 | 3 | 4 | 2 |
10 | 3 | 2 | 4 | 3 | 1 |
11 | 3 | 3 | 1 | 2 | 4 |
12 | 3 | 4 | 2 | 1 | 3 |
13 | 4 | 1 | 4 | 2 | 3 |
14 | 4 | 2 | 3 | 1 | 4 |
15 | 4 | 3 | 2 | 4 | 1 |
16 | 4 | 4 | 1 | 3 | 2 |
Tab. 9
Control results of different schemes for water resources overloaded cities (2035)"
调控方案 | 西安 | 铜川 | 宝鸡 | 渭南 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
WRCI | ABS(WRCI-1) | WRCI | ABS(WRCI-1) | WRCI | ABS(WRCI-1) | WRCI | ABS(WRCI-1) | ||||
1 | 1.10 | 0.10 | 1.13 | 0.13 | 1.00 | 0.00 | 0.99 | 0.01 | |||
2 | 1.03 | 0.03 | 1.09 | 0.09 | 0.90 | 0.10 | 0.95 | 0.05 | |||
3 | 0.96 | 0.04 | 1.06 | 0.06 | 0.83 | 0.17 | 0.92 | 0.08 | |||
4 | 0.90 | 0.10 | 1.02 | 0.02 | 0.76 | 0.24 | 0.90 | 0.10 | |||
5 | 1.05 | 0.05 | 1.11 | 0.11 | 0.96 | 0.04 | 0.97 | 0.03 | |||
6 | 1.02 | 0.02 | 1.09 | 0.09 | 0.90 | 0.10 | 0.94 | 0.06 | |||
7 | 0.97 | 0.03 | 1.05 | 0.05 | 0.82 | 0.18 | 0.92 | 0.08 | |||
8 | 0.85 | 0.15 | 0.99 | 0.01 | 0.79 | 0.21 | 0.91 | 0.09 | |||
9 | 1.06 | 0.06 | 1.10 | 0.10 | 0.95 | 0.05 | 0.97 | 0.03 | |||
10 | 1.02 | 0.02 | 1.07 | 0.07 | 0.87 | 0.13 | 0.94 | 0.06 | |||
11 | 0.97 | 0.03 | 1.07 | 0.07 | 0.84 | 0.16 | 0.91 | 0.09 | |||
12 | 0.94 | 0.06 | 1.05 | 0.05 | 0.79 | 0.21 | 0.90 | 0.10 | |||
13 | 1.04 | 0.04 | 1.09 | 0.09 | 0.93 | 0.07 | 0.96 | 0.04 | |||
14 | 0.99 | 0.01 | 1.07 | 0.07 | 0.87 | 0.13 | 0.93 | 0.07 | |||
15 | 1.00 | 0.00 | 1.07 | 0.07 | 0.82 | 0.18 | 0.91 | 0.09 | |||
16 | 0.96 | 0.04 | 1.05 | 0.05 | 0.79 | 0.21 | 0.89 | 0.11 |
Tab. 10
Change of regulation index under optimal regulation scheme in Guanzhong region"
城市 | 年份 | 单位面积农田灌溉用水量/(m3·hm-2) | 工业增加值增加率/% | 城镇居民生活用水定额/(L·人-1·d-1) | 农村居民生活用水定额/((L·人-1·d-1) | 人均生态用水量/(m3·人-1) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
调控前 | 调控后 | 调控前 | 调控后 | 调控前 | 调控后 | 调控前 | 调控后 | 调控前 | 调控后 | ||
西安 | 2025 | 130 | 120 | 8 | 4 | 212 | 186 | 80 | 66 | 32 | 30 |
2030 | 120 | 111 | 8 | 4 | 220 | 193 | 76 | 62 | 38 | 35 | |
2035 | 110 | 101 | 8 | 4 | 224 | 196 | 75 | 62 | 43 | 40 | |
铜川 | 2025 | 110 | 105 | 3 | 1 | 121 | 104 | 65 | 64 | 5 | 6 |
2030 | 105 | 101 | 3 | 1 | 127 | 109 | 71 | 67 | 6 | 7 | |
2035 | 103 | 99 | 3 | 1 | 133 | 115 | 74 | 70 | 7 | 7 | |
宝鸡 | 2025 | 110 | 107 | 10 | 8 | 161 | 151 | 127 | 121 | 9 | 9 |
2030 | 105 | 103 | 10 | 8 | 177 | 167 | 158 | 150 | 11 | 10 | |
2035 | 103 | 101 | 10 | 8 | 190 | 179 | 174 | 166 | 13 | 12 | |
渭南 | 2025 | 110 | 107 | 9 | 7 | 109 | 103 | 95 | 91 | 11 | 10 |
2030 | 105 | 103 | 9 | 7 | 102 | 96 | 110 | 105 | 12 | 12 | |
2035 | 103 | 101 | 9 | 7 | 96 | 90 | 116 | 111 | 13 | 12 |
[1] | 王浩, 王建华. 中国水资源与可持续发展[J]. 中国科学院院刊, 2012, 27(3): 352-358, 331. |
[Wang Hao, Wang Jianhua. Sustainable utilization of China’s water resources[J]. Journal of the Chinese Academy of Sciences, 2012, 27(3): 352-358, 331. ] | |
[2] | 张臻, 曹春霞, 何波. 国土空间规划体系重构语境下“双评价”研究进展与趋势[J]. 规划师, 2020, 36(5): 5-9. |
[Zhang Zhen, Cao Chunxia, He Bo. Research progress of “dual evaluations” in the restructuring of national land use and spatial[J]. Planner, 2020, 36 (5): 5-9. ] | |
[3] | 党辉, 刘刚, 马清瑞, 等. 陕西省关中地区水资源开发利用现状及节水潜力分析[J]. 陕西水利, 2019(6): 75-77. |
[Dang Hui, Liu Gang, Ma Qingrui, et al. Analysis of the current situation and water-saving potential of water resources development and utilization in the Guanzhong region of Shaanxi Province[J]. Shaanxi Water Resources, 2019(6): 75-77. ] | |
[4] | 吴卫宾, 韩锦辉, 杨天通, 等. 基于SD双要素模型的长春市水资源人口承载力动态模拟[J]. 郑州大学学报(理学版), 2017, 49(4): 126-131. |
[Wu Weibin, Han Jinhui, Yang Tiantong, et al. Dynamic simulation of water resource population carrying capacity in Changchun City based on SD dual factor model[J]. Journal of Zhengzhou University (Science Edition), 2017, 49(4): 126-131. ] | |
[5] | 夏军, 朱一中. 水资源安全的度量:水资源承载力的研究与挑战[J]. 自然资源学报, 2002, 17(3): 262-269. |
[Xia Jun, Zhu Yizhong. Measurement of water resource security: Research and challenges in water resource carrying capacity[J]. Journal of Natural Resources, 2002, 17(3): 262-269. ] | |
[6] | 王建华, 姜大川, 肖伟华, 等. 水资源承载力理论基础探析:定义内涵与科学问题[J]. 水利学报, 2017, 48(12): 1399-1409. |
[Wang Jianhua, Jiang Dachuan, Xiao Weihua, et al. Theoretical basis analysis of water resource carrying capacity: Definition connotation and scientific issues[J]. Journal of Water Resources, 2017, 48(12): 1399-1409. ] | |
[7] | 李谨, 董亚军, 傅新, 等. 基于生态足迹法的徒骇河-马颊河流域水资源承载力动态分析与预测[J]. 济南大学学报(自然科学版), 2022, 36(5): 524-532. |
[Li Jin, Dong Yajun, Fu Xin, et al. Dynamic analysis and prediction of water resource carrying capacity in the Tuhai Majia River Basin based on ecological footprint method[J]. Journal of Jinan University (Natural Science Edition), 2022, 36(5): 524-532. ] | |
[8] | 张礼兵, 胡亚南, 金菊良, 等. 基于系统动力学的巢湖流域水资源承载力动态预测与调控[J]. 湖泊科学, 2021, 33(1): 242-254. |
[Zhang Libing, Hu Yanan, Jin Juliang, et al. Dynamic prediction and regulation of water resource carrying capacity in the Chaohu Lake Basin based on system dynamics[J]. Lake Science, 2021, 33(1): 242-254. ] | |
[9] | 黄昌硕, 耿雷华, 颜冰, 等. 水资源承载力动态预测与调控——以黄河流域为例[J]. 水科学进展, 2021, 32(1): 59-67. |
[Huang Changshuo, Geng Leihua, Yan Bing, et al. Dynamic prediction and regulation of water resource carrying capacity: A case study of the Yellow River Basin[J]. Progress in Water Science, 2021, 32(1): 59-67. ] | |
[10] |
Winz I, Brierley G, Trowsdale S. The use of system dynamics simulation in water resources management[J]. Water resources management, 2009, 23: 1301-1323.
doi: 10.1007/s11269-008-9328-7 |
[11] | 杨波, 王文, 秦大军, 等. 海南岛水资源承载力分析及预测[J]. 水文, 2022, 42(3): 78-83. |
[Yang Bo, Wang Wen, Qin Dajun, et al. Analysis and prediction of water resource carrying capacity in Hainan Island[J]. Hydrology, 2022, 42(3): 78-83. ] | |
[12] | 章恒全, 何薇. 基于主成分回归与灰色神经网络模型的水资源承载力需水量预测[J]. 水资源与水工程学报, 2014, 25(1): 103-108. |
[Zhang Hengquan, He Wei. Prediction of water resource carrying capacity and water demand based on principal component regression and grey neural network model[J]. Journal of Water Resources and Water Engineering, 2014, 25(1): 103-108. ] | |
[13] |
Winz I, Brierley G, Trowsdale S. The use of system dynamics simulation in water resources management[J]. Water Resources Management, 2009, 23: 1301-1323.
doi: 10.1007/s11269-008-9328-7 |
[14] |
Mirchi A, Madani K, Watkins D, et al. Synthesis of system dynamics tools for holistic conceptualization of water resources problems[J]. Water Resources Management, 2012, 26: 2421-2442.
doi: 10.1007/s11269-012-0024-2 |
[15] | 张雪花, 郭怀成, 张宝安. 系统动力学-多目标规划整合模型在秦皇岛市水资源规划中的应用[J]. 水科学进展, 2002, 13(3): 351-357. |
[Zhang Xuehua, Guo Huaicheng, Zhang Bao’an. Application of system dynamics multi objective programming integration model in water resources planning of Qinhuangdao City[J]. Progress in Water Science, 2002, 13(3): 351-357. ] | |
[16] | 康艳, 闫亚廷, 杨斌. 基于LMDI-SD耦合模型的绿色发展灌区水资源承载力模拟[J]. 农业工程学报, 2020, 36(19): 150-160. |
[Kang Yan, Yan Yating, Yang Bin. Simulation of water resource carrying capacity in green development irrigation areas based on LMDI-SD coupling model[J]. Journal of Agricultural Engineering, 2020, 36(19): 150-160. ] | |
[17] | 李琪. 关中平原浅层地下水资源现状及管理保护对策[J]. 地下水, 2012, 34(5): 62-63. |
[Li Qi. Current situation and management protection measures of shallow groundwater resources in the Guanzhong plain[J]. Groundwater, 2012, 34(5): 62-63. ] | |
[18] | 刘俊民, 郭瑞. 关中平原降水特征分析[J]. 人民黄河, 2008, 30(5): 22-24. |
[Liu Junmin, Guo Rui. Analysis of precipitation characteristics in the Guanzhong plain[J]. People’s Yellow River, 2008, 30(5): 22-24. ] | |
[19] | 屈小娥. 陕西省水资源承载力综合评价研究[J]. 干旱区资源与环境, 2017, 31(2): 91-97. |
[Qu Xiao’e. Comprehensive evaluation of water resources carrying capacity in Shaanxi Province[J]. Resources and Environment in Arid Areas, 2017, 31(2): 91-97. ] | |
[20] | Kaya Y. “Impact of Carbon Dioxide Emission Control on Gnp Growth: Interpretation of Proposed Scenarios” Ppcc Response Strategies Working Group Memorandum 1989[R]. IPCC Energy and Industry Subgroup, Response Strategies Working Group, 1990. |
[21] | 谢娟, 粟晓玲. 基于LMDI的灌溉需水量变化影响因素分解[J]. 农业工程学报, 2017, 33(7): 123-131. |
[Xie Juan, Su Xiaoling. Decomposition of factors influencing changes in irrigation water demand based on LMDI[J]. Journal of Agricultural Engineering, 2017, 33(7): 123-131. ] | |
[22] | 朱文礼, 张礼兵, 伍露露, 等. 基于系统模拟的县域水资源承载力动态预测及调控研究——以庐江县为例[J]. 中国农村水利水电, 2020(2): 16-22. |
[Zhu Wenli, Zhang Libing, Wu Lulu, et al. Dynamic prediction and regulation of county water resource carrying capacity based on system simulation: A case study of Lujiang County[J]. China Rural Water Resources and Hydropower, 2020(2): 16-22. ] | |
[23] | 黄天意, 周晋军, 李雅君, 等. 六种预测模型在北京市城市生态环境用水短期预测中的比较[J]. 水利水电技术, 2022, 53(3): 119-133. |
[Huang Tianyi, Zhou Jinjun, Li Yajun, et al. Comparison of six prediction models in short-term prediction of urban ecological environment water use in Beijing[J]. Water Resources and Hydropower Technology, 2022, 53(3): 119-133. ] | |
[24] | 卢方园, 贾德彬, 高瑞忠, 等. 库布齐沙漠社会经济系统动态仿真及其应用[J]. 干旱区研究, 2022, 39(4): 1102-1111. |
[Lu Fangyuan, Jia Debin, Gao Ruizhong, et al. Dynamic simulation and application of the social and economic system in the Kubuqi desert[J]. Arid Zone Research, 2022, 39(4): 1102-1111. ] | |
[25] | 王奕淇, 李国平, 延步青. 基于SD与AHP模型的流域水资源承载力仿真研究[J]. 系统工程, 2022, 40(3): 24-32. |
[Wang Yiqi, Li Guoping, Yan Buqing. Simulation study on basin water resource carrying capacity based on SD and AHP models[J]. Systems Engineering, 2022, 40(3): 24-32. ] | |
[26] | 程吉林, 郭元裕. 大系统数学规划试验选优方法及其应用[J]. 中国科学: E 辑, 1998, 28(3): 254-258. |
[Cheng Jilin, Guo Yuanyu. Optimization methods and applications for large system mathematical programming experiments[J]. Chinese Science: Series E, 1998, 28(3): 254-258. ] |
|