[1] Fischer A. Glaciers and climate change: Interpretation of 50 years of direct mass balance of Hintereisferner[J]. Global and Planetary Change, 2010, 71(1-2): 13-26.
[2] Screen J, Simmonds I. The central role of diminishing sea ice in re⁃ cent Arctic temperature amplification[J]. Nature, 2010, 464(7293): 1334-1337.
[3] Serreze M, Barry R. Processes and impacts of Arctic amplification: A research synthesis[J]. Global and Planetary Change, 2011, 77(1- 2): 85-96.
[4] Rye C, Arnold N, Willis I, et al. Modeling the surface mass balance of a high Arctic glacier using the ERA-40 reanalysis[J]. Journal of Geophysical Research Atmospheres, 2010, 115(F2): 141-150.
[5] Mark B, Dyurgerov M F M. Twentieth century climate change: Evi⁃ dence from small glaciers[J]. Proceedings of the National Acade⁃ my of Sciences of The United States of America, 2000, 97(4): 1406-1411.
[6] Zemp M, Nussbaumer S, Naegeli K, et al. Glacier mass balance bulletin: No. 12 ( 2010—2011) [R]. Zurich, Switzerland: World Glacier Monitoring Service, 2013.
[7] Zemp M, Nussbaumer S U, Gärtner- Roer I, et al. Global glacier change bulletin: No. 2(2014—2015) [R]. Zurich, Switzerland: World Glacier Monitoring Service, 2017.
[8] Huss M, Stöckli R, Kappenberger G, et al. Temporal and spatial changes of Laika Glacier, Canadian Arctic, since 1959, inferred from satellite remote sensing and mass-balance modelling[J]. Jour⁃ nal of Glaciology, 2008, 54(188): 857-866.
[9] Hodson A, Kohler J, Brinkhaus M, et al. Multi-year water and sur⁃ face energy budget of a high-latitude polythermal glacier: Evidence for overwinter water storage in a dynamic subglacial reservoir[J]. Annals of Glaciology, 2005, 42(1): 42-46.
[10] Josberger E, Bidlake W, March R, et al. Glacier mass-balance fluc⁃ tuations in the Pacific Northwest and Alaska, USA[J]. Annals of Glaciology, 2007, 46(1): 291-296.
[11] 程振波, 石学法, 吴永华, 等. 北极地区挪威斯瓦尔巴群岛及冰 川地貌综述[J]. 海洋科学进展, 2008, 26(2): 260-265. [Cheng Zhengbo, Shi Xuefa, Wu Yonghua, et al. Asurvey of Norwegian Svalbard islands and glacial geomorphology in the Arctic regions [J]. Advances in Marine Science, 2008, 26(2): 260-265.]
[12] Authors C L, Brigham L, Mccalla R, et al. Arctic Marine Shipping Assessment 2009 Report[M]. Cambridge: Cambridge University Press, 2009.
[13] Ottobliesner B, Marshall S, Overpeck J, et al. Simulating Arctic cli⁃ mate warmth and icefield retreat in the last interglaciation[J]. Sci⁃ ence, 2006, 311(5768): 1751-1753.
[14] 杨大庆. 北半球50条山地冰川近期的物质平衡状况[J]. 水科学 进展, 1992, 3(3): 161-165.[Yang Daqing. On the mass balance of 50 mountain glaciers in the Northern Hemisphere[J]. Advances in Water Science, 1992, 3( 3): 161-165. ]
[15] Rasmussen L A, Conway H. Influence of upper-air conditions on gla⁃ ciers in Scandinavia[J]. Annals of Glaciology, 2005, 42(1): 402-408.
[16] Marzeion B, Nesje A. Spatial patterns of North Atlantic Oscillation influence on mass balance variability of European glaciers[J]. Cryosphere, 2012, 6(3): 661-673.
[17] Nawri N, Harstveit K. Variability of surface wind directions over Finn⁃ mark, Norway, and coupling to the larger-scale atmospheric circula⁃ tion[J]. Theoretical and Applied Climatology, 2012, 107(1-2): 15-33.
[18] Andreassen L, Kjøllmoen B, Rasmussen A, et al. Langfjordjøkel⁃ en, a rapidly shrinking glacier in northern Norway[J]. Journal of Glaciology, 2012, 58(209): 581-593.
[19] Voloshina A P. Some results of glacier mass balance research on the glaciers of the Polar Urals[J]. Polar Geography and Geology, 1988, 12(3): 200-211.
[20] 康世昌, 姚檀栋, 秦大河, 等.北极Svalbard地区气候变化特征及 其与青藏高原对比[J].地理科学, 1998, 18(4): 21-28. [Kang Shichang, Yao Tandong, Qin Dahe, et al. Characteristics of climatic change in Svalbard in the Arctic and comparison with the Qinghai- Xizang Plateau[J]. Scientia Geographica Sinica, 1998, 18(4): 21-28. ]
[21] Harald L. Features of the physical oceanographic conditions of the Barents Sea[J]. Polar Research, 1991, 10(1): 5-18.
[22] Grabiec M, Leszkiewicz J, Głowacki P, et al. Distributionof snow accumulation on some glaciers of Spitsbergen[J]. Polish Polar Re⁃ search, 2006, 27(4): 309-326.
[23] 王宁练, 贺建桥, 蒲健辰, 等.近50年来祁连山七一冰川平衡线 高度变化研究[J].科学通报, 2010, 55(32): 3107-3115. [Wang Ninglian, He Jianqiao, Pu Jianchen, et al.Variations in equilibrium line altitude of the Qiyi Glacier, Qilian Mountains, over the past 50 years[J]. Chinese Science Bulletin, 2010, 55(32): 3107-3115. ]
[24] 姚檀栋.冰川物质平衡、零平线及气候间的关系——以天山乌 鲁木齐河源1 号冰川为例[J].冰川冻土, 1987, 9(4): 289-300. [Yao Tandong. The relationship between glacier mass balance, ze⁃ ro flat line and climate: A case study of Urumqi Glacier No.1 in Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 1987, 9(4): 289-300. ]
[25] Overland J. Future Arctic climate changes: Adaptation and mitiga⁃ tion time scales[J]. Earths Future, 2014, 2(2): 68-74.
[26] 何海迪, 李忠勤, 王璞玉, 等. 近50年来北极斯瓦尔巴地区冰川 物质平衡变化特征[J]. 冰川冻土, 2017, 39(4): 701-709. [He Haidi, Li Zhongqin, Wang Puyu, et al. Variation characteristics of glacier mass balance in Svalbard, Arctic, in recent 50 years[J]. Journal of Glaciology and Geocryology, 2017, 39(4): 701-709. ] |