Arid Zone Research ›› 2024, Vol. 41 ›› Issue (11): 1819-1830.doi: 10.13866/j.azr.2024.11.03
• Weather and Climate • Previous Articles Next Articles
YANG Nan1(), SONG Xiaoyu2(), DENG Jianwei1, LI Lanjun2, ZHAO Xinkai2, MENG Pengfei2, FU Chong2, WEI Wanyin2, ZHANG Yubin1, DING Lin1, LI Haolin3
Received:
2024-05-12
Revised:
2024-06-26
Online:
2024-11-15
Published:
2024-11-29
Contact:
SONG Xiaoyu
E-mail:15379010323@163.com;songxy@xaut.edu.cn
YANG Nan, SONG Xiaoyu, DENG Jianwei, LI Lanjun, ZHAO Xinkai, MENG Pengfei, FU Chong, WEI Wanyin, ZHANG Yubin, DING Lin, LI Haolin. Research on the distribution and control mechanism of evapotranspiration in the Nanxiaohegou watershed based on an improved S-W model[J].Arid Zone Research, 2024, 41(11): 1819-1830.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 2
Standardization coefficients and significance among control factors"
初始模型参数估计 | 修正模型参数估计 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
变量 | 关系 | 变量 | Std | S.E. | C.R. | P | 变量 | 关系 | 变量 | Std | S.E. | C.R. | P |
T | ← | u | -0.218 | 0.042 | -9.378 | *** | T | ← | u | -0.219 | 0.042 | -9.378 | *** |
T | ← | Ta | 0.588 | 0.003 | 25.195 | *** | T | ← | Ta | 0.591 | 0.003 | 25.195 | *** |
T | ← | θ | 0.513 | 1.286 | 20.429 | *** | T | ← | θ | 0.517 | 1.286 | 20.429 | *** |
T | ← | LAI | 0.205 | 0.015 | 8.831 | *** | T | ← | LAI | 0.206 | 0.015 | 8.831 | *** |
T | ← | Rn | 0.609 | 0.000 | 24.78 | *** | T | ← | Rn | 0.614 | 0.000 | 24.78 | *** |
T | ← | D | 0.064 | 0.024 | 2.952 | 0.003 | T | ← | D | 0.064 | 0.024 | 2.952 | 0.003 |
E | ← | θ | -0.057 | 1.132 | -1.249 | 0.212 | E | ← | T | 0.514 | 0.018 | 13.77 | *** |
E | ← | Ta | 0.098 | 0.003 | 2.104 | 0.035 | E | ← | D | 0.083 | 0.017 | 2.669 | 0.008 |
E | ← | LAI | -0.037 | 0.011 | -1.044 | 0.297 | E | ← | Ta | 0.110 | 0.003 | 2.784 | 0.005 |
E | ← | T | 0.535 | 0.027 | 9.758 | *** | Ta | ↔ | D | 0.130 | 0.087 | 3.629 | *** |
E | ← | D | 0.084 | 0.017 | 2.697 | 0.007 | Ta | ↔ | Rn | 0.181 | 7.113 | 4.687 | *** |
E | ← | u | 0.005 | 0.031 | 0.146 | 0.884 | u | ↔ | Rn | 0.334 | 0.553 | 8.502 | *** |
E | ← | Rn | -0.008 | 0.000 | -0.161 | 0.872 | u | ↔ | θ | -0.146 | 0.000 | -4.02 | *** |
θ | ↔ | LAI | -0.346 | 0.000 | -8.522 | *** | u | ↔ | Ta | 0.231 | 0.058 | 5.96 | *** |
θ | ↔ | D | -0.013 | 0.000 | -0.336 | 0.737 | θ | ↔ | LAI | -0.351 | 0.000 | -8.711 | *** |
θ | ↔ | Ta | -0.33 | 0.002 | -8.181 | *** | θ | ↔ | Ta | -0.332 | 0.002 | -8.279 | *** |
θ | ↔ | u | -0.133 | 0.000 | -3.431 | *** | θ | ↔ | Rn | -0.387 | 0.020 | -9.448 | *** |
θ | ↔ | Rn | -0.383 | 0.020 | -9.317 | *** | LAI | ↔ | Ta | 0.137 | 0.158 | 3.644 | *** |
LAI | ↔ | D | 0.081 | 0.020 | 2.114 | 0.035 | LAI | ↔ | Rn | 0.248 | 1.466 | 6.626 | *** |
LAI | ↔ | Ta | 0.138 | 0.163 | 3.573 | *** | |||||||
LAI | ↔ | Rn | 0.235 | 1.539 | 5.976 | *** | |||||||
u | ↔ | LAI | -0.039 | 0.012 | -1.022 | 0.307 | |||||||
u | ↔ | D | -0.036 | 0.007 | -0.946 | 0.344 | |||||||
u | ↔ | Ta | 0.221 | 0.059 | 5.627 | *** | |||||||
u | ↔ | Rn | 0.326 | 0.566 | 8.076 | *** | |||||||
D | ↔ | Ta | 0.13 | 0.093 | 3.369 | *** | |||||||
D | ↔ | Rn | 0.028 | 0.859 | 0.739 | 0.460 | |||||||
Ta | ↔ | Rn | 0.182 | 7.144 | 4.658 | *** |
Tab. 4
Influence coefficients of control factors on plant transpiration and soil water evaporation"
饱和水汽压差 | 净辐射 | 气温 | 叶面积指数 | 土壤表层含水量 | 参照高度风速 | 植物蒸腾 | |||
---|---|---|---|---|---|---|---|---|---|
总影响 | 植物蒸腾 | 0.064 | 0.614 | 0.591 | 0.206 | 0.517 | -0.219 | - | |
土壤蒸发 | 0.116 | 0.309 | 0.426 | 0.104 | 0.260 | -0.110 | 0.503 | ||
直接影响 | 植物蒸腾 | 0.064 | 0.614 | 0.591 | 0.206 | 0.517 | -0.219 | - | |
土壤蒸发 | 0.083 | - | 0.128 | - | - | - | 0.503 | ||
间接影响 | 植物蒸腾 | - | - | - | - | - | - | - | |
土壤蒸发 | 0.032 | 0.309 | 0.298 | 0.104 | 0.260 | -0.110 | - |
[1] |
康利刚, 曹生奎, 曹广超, 等. 青海湖沙柳河流域蒸散发时空变化特征[J]. 干旱区研究, 2023, 40(3): 358-372.
doi: 10.13866/j.azr.2023.03.03 |
[Kang Ligang, Cao Shengkui, Cao Guangchao, et al. Temporal and spatial variation of evapotranspiration in Shaliuhe River Basin of Qinghai Lake[J]. Arid Zone Research, 2023, 40(3): 358-372. ]
doi: 10.13866/j.azr.2023.03.03 |
|
[2] | 李蓝君, 宋孝玉, 夏露, 等. 黄土高原沟壑区典型造林树种蒸散发对气候变化的响应[J]. 农业工程学报, 2018, 34(20): 148-159. |
[Li Lanjun, Song Xiaoyu, Xia Lu, et al. Response of evaporation of typical afforestation tree species to climate change in gully area of Loess Plateau[J]. Journal of Agricultural Engineering, 2018, 34(20): 148-159. ] | |
[3] |
庄淏然, 冯克鹏, 许德浩. 蒸散分离的玉米水分利用效率变化及影响因素[J]. 干旱区研究, 2023, 40(7): 1117-1130.
doi: 10.13866/j.azr.2023.07.09 |
[Zhuang Haoran, Feng Kepeng, Xu Dehao. Changes and influencing factors of water use efficiency of maize by evapotranspiration[J]. Arid Zone Research, 2023, 40(7): 1117-1130. ]
doi: 10.13866/j.azr.2023.07.09 |
|
[4] | Kell B W, Paul J H, Patrick J M, et al. A comparison of methods for determining forest evapotranspiration and its components: Sap-flow, soil water budget, eddy covariance and catchment water balance[J]. Agricultural and Forest Meteorology, 2001, 106: 153-168. |
[5] | Gharsallah O, Facchi A, Gandolfi C. Comparison of six evapotranspiration models for a surface irrigated maize agroecosystem in northern Italy[J]. Agricultural Water Management, 2013, 130: 119-130. |
[6] |
卢宝宝, 孙慧兰, 姜泉泉, 等. 近53 a新疆水分盈亏量时空变化特征[J]. 干旱区研究, 2021, 38(6): 1579-1589.
doi: 10.13866/j.azr.2021.06.10 |
[Lu Baobao, Sun Huilan, Jiang Quanquan, et al. Spatiotemporal variation characteristics of the water budget in Xinjiang during the latest 53 years[J]. Arid Zone Research, 2021, 38(6): 1579-1589. ]
doi: 10.13866/j.azr.2021.06.10 |
|
[7] | 段利民, 童新, 吕扬, 等. 固沙植被黄柳、小叶锦鸡儿蒸腾耗水尺度提升研究[J]. 自然资源学报, 2018, 33(1): 52-62. |
[Duan Limin, Tong Xin, Lv Yang, et al. Study on the enhancement of water consumption scale of sand-fixing vegetation Salix koreensis and Cotoneaster horizontalis[J]. Journal of Natural Resources, 2018, 33(1): 52-62. ] | |
[8] |
王宇, 周莉, 贾庆宇, 等. 基于Shuttleworth-Wallace模型的水稻蒸散组分模拟及其特征分析[J]. 中国农业气象, 2017, 38(11): 709-719.
doi: 10.3969/j.issn.1000-6362.2017.11.003 |
[Wang Yu, Zhou Li, Jia Qingyu, et al. Simulation and characteristic analysis of rice evapotranspiration components based on Shuttleworth-Wallace model[J]. Chinese Journal of Agrometeorology, 2017, 38(11): 709-719. ] | |
[9] | 包永志, 刘廷玺, 段利民, 等. 基于Shuttleworth-Wallace模型的科尔沁沙地流动半流动沙丘蒸散发模拟[J]. 应用生态学报, 2019, 30(3): 867-876. |
[Bao Yongzhi, Liu Tingxi, Duan Limin, et al. Evaporation simulation of mobile semi-mobile dunes in Horqin Sandland based on Shuttleworth-Wallace model[J]. Journal of Applied Ecology, 2019, 30(3): 867-876. ] | |
[10] | Shuttleworth W J, Wallace J S. Evaporation from sparse crops-an energy combination theory[J]. Quarterly Journal of the Royal Meteorological Society, 1985, 111: 839-855. |
[11] | Ortega F S, Poblete E C, Brisson N. Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements[J]. Agricultural and Forest Meteorology, 2010, 150: 276-286. |
[12] | 李艳, 刘海军, 黄冠华. 麦秸覆盖条件下土壤蒸发阻力及蒸发模拟[J]. 农业工程学报, 2015, 31(1): 98-106. |
[Li Yan, Liu Haijun, Huang Guanhua. Soil evaporation resistance and evaporation simulation under wheat straw mulch[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(1): 98-106. ] | |
[13] | 刘春伟, 曾勰婷, 邱让建. 用分时段修正双源模型估算南京地区冬小麦生育期蒸散量[J]. 农业工程学报, 2016, 32(增刊): 80-87. |
[Liu Chunwei, Zeng Xieting, Qiu Rangjian. Estimation of evapotranspiration of winter wheat during growth period in Nanjing using time-segmentated modified dual-source model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(Suppl. ): 80-87. ] | |
[14] |
胡广录, 刘鹏, 李嘉楠, 等. 黑河中游绿洲边缘三种景观类型土壤水分动态特征及影响因素[J]. 干旱区研究, 2024, 41(4): 550-565.
doi: 10.13866/j.azr.2024.04.03 |
[Hu Guanglu, Liu Peng, Li Jianan, et al. Characteristics of soil moisture dynamics and influencing factors of three landscape types at the oasis edge in the middle reaches of the Heihe River[J]. Arid Zone Research, 2024, 41(4): 550-565. ]
doi: 10.13866/j.azr.2024.04.03 |
|
[15] | 赵丽雯, 赵文智, 吉喜斌. 西北黑河中游荒漠绿洲农田作物蒸腾与土壤蒸发区分及作物耗水规律[J]. 生态学报, 2015, 35(4): 1114-1123. |
[Zhao Liwen, Zhao Wenzhi, Ji Xibin. Differentiation of crop transpiration and soil evaporation in the farmland oasis of the middle reaches of Heihe River in northwest China and the law of crop water consumption[J]. Acta Ecologica Sinica, 2015, 35(4): 1114-1123. ] | |
[16] |
姚佳, 陈启慧, 李琼芳, 等. 伊犁河—巴尔喀什湖流域实际蒸散发时空变化特征及其环境影响因子[J]. 干旱区研究, 2022, 39(5): 1564-1575.
doi: 10.13866/j.azr.2022.05.21 |
[Yao Jia, Chen Qihui, Li Qiongfang, et al. Spatial and temporal variation of actual evapotranspiration and its environmental impact factors in the Ili River-Balkhash Lake Basin[J]. Arid Zone Research, 2022, 39(5): 1564-1575. ]
doi: 10.13866/j.azr.2022.05.21 |
|
[17] |
魏宁宁, 母艳梅, 姜晓燕, 等. 毛乌素沙地油蒿-杨柴灌丛生态系统蒸散组分分配及其影响因子[J]. 应用生态学报, 2021, 32(7): 2407-2414.
doi: 10.13287/j.1001-9332.202107.015 |
[Wei Ningning, Mu Yanmei, Jiang Xiaoyan, et al. Distribution of evapotranspiration components and its influencing factors in Artemisia ordosica shrub ecosystem in Mu Us Sandy Land[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2407-2414. ]
doi: 10.13287/j.1001-9332.202107.015 |
|
[18] |
雷菲亚, 李小双, 陶冶, 等. 西北干旱区藓类结皮覆盖下土壤多功能性特征及影响因子[J]. 干旱区研究, 2024, 41(5): 812-820.
doi: 10.13866/j.azr.2024.05.09 |
[Lei Feiya, Li Xiaoshuang, Tao Ye, et al. Characterization of soil multifunctionality and its determining factors under moss crust cover in the arid regions of Northwest China[J]. Arid Zone Research, 2024, 41(5): 812-820. ]
doi: 10.13866/j.azr.2024.05.09 |
|
[19] | Noilhan J, Planton S. A simple parameterization of land surface processes for meteorological models[J]. Monthly Weather Review, 1989, 117: 536-549. |
[20] |
周静, 孙永峰, 丁杰萍, 等. 退化沙质草地恢复过程中植被生物量变化及其与土壤碳的关系[J]. 干旱区研究, 2023, 40(9): 1457-1464.
doi: 10.13866/j.azr.2023.09.09 |
[Zhou Jing, Sun Yongfeng, Ding Jieping, et al. Changes in vegetation biomass and its relationship with soil carbon during restoration processes in degraded sandy grasslands[J]. Arid Zone Research, 2023, 40(9): 1457-1464. ]
doi: 10.13866/j.azr.2023.09.09 |
|
[21] | Jarvis P G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field[J]. Philosophical Transactions of the Royal Society B Biological Sciences, 1976, 273: 593-610. |
[22] | 崔建国. 黄土半干旱区林木水分生理特性与土壤水分关系研究[D]. 北京: 北京林业大学, 2012. |
[Cui Jianguo. Relationship Between forest Water Physiological Characteristics and Soil Water In Loess Semi-arid Region[D]. Beijing: Beijing Forestry University, 2012. ] | |
[23] | Zhao P, Li S, Tong S L, et al. Comparison of dual crop coefficient method and Shuttleworth-Wallace model in evapotranspiration partitioning in a vineyard of Northwest China[J]. Agricultural Water Management, 2015, 160: 41-56 |
[24] | 乔英, 马英杰, 辛明亮. 基于改进S-W与结构方程模型的干旱区枣园蒸散特征分析[J]. 农业机械学报, 2021, 52(8): 307-317. |
[Qiao Ying, Ma Yingjie, Xin Mingliang. Evapotranspiration characteristics of Jujube orchard in arid region based on improved S-W and Structural Equation model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 307-317. ] | |
[25] | Zhang B Z, Kang S Z, Li F S, et al. Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest[J]. Agricultural and Forest Meteorology, 2008, 148: 1629-1640 |
[26] | Chen H, Huang J J, Mcbean E. Partitioning of daily evapotranspiration using a modified Shuttleworth-Wallace model, random Forest and support vector regression, for a cabbage farmland[J]. Agricultural Water Management, 2020, 228: 105923. |
[27] | 张瑞文, 赵成义, 王丹丹, 等. 极端干旱区不同水分条件下胡杨林生态耗水特征[J]. 水土保持学报, 2019, 33(4): 270-278. |
[Zhang Ruiwen, Zhao Chengyi, Wang Dandan, et al. Ecological water consumption characteristics of poplar forest under different water conditions in extreme arid region[J]. Journal of Soil and Water Conservation, 2019, 33(4): 270-278. ] | |
[28] | Hu Z M, Yu G R, Zhou Y L, et al. Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model[J]. Agricultural and Forest Meteorology, 2009, 149: 1410-1420. |
[29] | Kang S, Gu B, Du T. Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in semi-humid region[J]. Agricultural Water Management, 2007, 59: 239-254. |
[30] | Zhu G F, Su Y H, Li X, et al. Estimating actual evapotranspiration from an alpine grassland on Qinghai-Tibetan plateau using a two-source model and parameter uncertainty analysis by Bayesian approach[J]. Journal of Hydrology, 2013, 476: 42-51. |
[31] | 刘国水, 刘钰, 蔡甲冰, 等. 农田不同尺度蒸散量的尺度效应与气象因子的关系[J]. 水利学报, 2011, 42(3): 284-289. |
[Liu Guoshui, Liu Yu, Cai Jiabing, et al. Relationship between scale effects of evapotranspiration at different scales and meteorological factors in farmland[J]. Journal of Hydraulic Engineering, 2011, 42(3): 284-289. ] | |
[32] | 吴友杰, 杜太生. 西北干旱区农田土壤蒸发量及影响因子分析[J]. 农业工程学报, 2020, 36(12): 110-116. |
[Wu Youjie, Du Taisheng. Analysis of soil evaporation and its influencing factors in arid area of Northwest China[J]. Journal of Agricultural Engineering, 2020, 36(12): 110-116. ] | |
[33] | 刘丽霞, 王辉, 孙栋元, 等. 绿洲农田防护林系统土壤蒸发特征研究[J]. 干旱区资源与环境, 2008, 11(1): 162-166. |
[Liu Lixia, Wang Hui, Sun Dongyuan, et al. Study on soil evaporation characteristics of oasis farmland shelterbelt system[J]. Journal of Arid Land Resources and Environment, 2008, 11(1): 162-166. ] | |
[34] | Goyal R K. Sensitivity of evapotranspiration to global warming: A case study of arid zone of Rajasthan[J]. Agricultural Water Management, 2004, 69: 1-11. |
[35] | 杨文静, 赵建世, 赵勇, 等. 基于结构方程模型的蒸散发归因分析[J]. 清华大学学报, 2022, 62(3): 581-588. |
[Yang Wenjing, Zhao Jianshi, Zhao Yong, et al. Evapotranspiration attribution analysis based on structural equation model[J]. Journal of Tsinghua University, 2022, 62(3): 581-588. ] |
No related articles found! |
|