[1] Malmros J K, Mernild S H, Wilson R, et al. Snow cover and snowalbedo changes in the central Andes of Chile and Argentina fromdaily MODIS observations (2000-2016)[J]. Remote Sensing of En⁃vironment, 2018, 209: 240-252.[2] 毛瑞娟, 吴红波, 贺建桥, 等. 昆仑山木孜塔格冰川反照率变化特征及其与粉尘的关系[J]. 冰川冻土, 2013, 35(5): 1133-1142.[Mao Ruijuan, Wu Hongbo, He Jianqiao, et al. Spatiotemporal vari⁃ation of albedo of Muztagh Glacier in the Kunlun Mountains andits relation to dust[J]. Journal of Glaciology and Geocryology,2013, 35(5): 1133-1142. ]
[3] 李开明, 陈世峰, 康玲芬, 等. 中国大陆型冰川和海洋型冰川变化比较分析——以天山乌鲁木齐河源1号冰川和玉龙雪山白水河1号冰川为例[J]. 干旱区研究, 2018, 35(1): 12-19. [Li Kai⁃ming, Chen Shifeng, Kang Lingfen, et al. Variation of continentalglacier and temperate glacier in China: A case study of GlacierNo. 1 at the headwaters of the Urumqi River and Baishui GlacierNo. 1[J]. Arid Zone Research, 2018, 35(1): 12-19. ]
[4] Davaze L, Rabatel A, Yves A, et al. Monitoring glacier albedo as aproxy to derive summer and annual surface mass balances from opti⁃cal remote-sensing data[J]. The Cryosphere, 2018, 12(1): 271-286.[5] Stroece J C, Box J E, Haran T. Evaluation of the MODIS(MOD10A1) daily snow albedo product over the Greenland icesheet[J]. Remote Sensing of Environment, 2006, 105(2): 155-171.[6] Tekeli A E, Şensoy A, Şorman A, et al. Accuracy assessment ofMODIS daily snow albedo retrievals with in situ measurements inKarasu basin, Turkey[J]. Hydrological Processes: An InternationalJournal, 2006, 20(4): 705-721.[7] 王杰, 何晓波, 叶柏生, 等. 唐古拉山冬克玛底冰川反照率变化特征研究[J]. 冰川冻土, 2012, 34(1): 21-28. [Wang Jie, He Xiao⁃bo, Ye Baisheng, et al. Variations of albedo on the DongkemadiGlacier, Tanggula Range[J]. Journal of Glaciology and Geocryolo⁃gy, 2012, 34(1): 21-28. ]
[8] 徐田利, 邬光剑, 张学磊, 等. 基于MODIS数据的青藏高原冰川反照率时空分布及变化研究[J]. 冰川冻土, 2018, 40(5): 875-883. [Xu Tianli, Wu Guangjian, Zhang Xuelei, et al. Albedo onglaciers in the Tibetan Plateau based on MODIS data: Spatiotem⁃poral distribution and variation[J]. Journal of Glaciology and Geoc⁃rylogy, 2018, 40(5): 875-883. ]
[9] Zhang Z, Jiang L, Liu L, et al. Annual glacier-wide mass balance(2000- 2016) of the interior Tibetan Plateau reconstructed fromMODIS albedo products[J]. Remote Sensing, 2018, 10(7): 1031-1052.[10] 郭力仁, 蒙吉军, 李枫. 基于空间异质性的黑河中游水资源脆弱性研究[J]. 干旱区资源与环境, 2018, 32(9): 175-182. [Guo Li⁃ren, Meng Jijun, Li Feng. Water resources vulnerability in the mid⁃dle reaches of Heihe River based on spatial heterogeneity[J]. Jour⁃nal of Arid Land Resources and Environment, 2018, 32(9): 175-182. ]
[11] 怀保娟, 李忠勤, 孙美平, 等. 近50年黑河流域的冰川变化遥感分析[J]. 地理学报, 2014, 69(3): 365-377. [Huai Baojuan, LiZhongqin, Sun Meiping, et al. RS analysis of glaciers change inthe Heihe River Basin in the last 50 years[J]. Acta Geographica Si⁃nica, 2014, 69(3): 365-377. ]
[12] 刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16. [Liu Shiyin, Yao Xiaojun,Guo Wanqin, et al. The contemporary glaciers in China based onthe Second Chinese Glacier Inventory[J]. Journal of GeographicalSciences, 2015, 70(1): 3-16. ]
[13] Guo W, Liu S, Xu J, et al. The second Chinese glacier inventory:Data, methods and results[J]. Journal of Glaciology, 2015, 61(226): 357-372.[14] Sun M, Liu S, Yao X, et al. Glacier changes in the past half-centu⁃ry: Based on the revised First and Second Chinese Glacier Invento⁃ry[J]. Journal of Geographical Sciences, 2018, 28(2): 206-220.[15] 毛瑞娟, 蒋熹, 郭忠明, 等. 基于TM/ETM+影像反演祁连山七一冰川反照率精度比较研究[J]. 冰川冻土, 2013, 35(2): 301-309.[Mao Ruijuan, Jiang Xi, Guo Zhongming, et al. Study of the inver⁃sion precision of albedo on the Qiyi Glacier in the Qilian Moun⁃tain based on TM/ETM+ image[J]. Journal of Glaciology and Geoc⁃ryology, 2013, 35(2): 301-309. ]
[16] Shangguan D, Liu S Ding Y, et al. Changes in the elevation and ex⁃tent of two glaciers along the Yanglonghe river, Qilian Shan, China[J]. Journal of Glaciology, 2010, 56(196): 309-317.[17] 王宁练, 蒲健辰. 祁连山八一冰川雷达测厚与冰储量分析[J]. 冰川冻土, 2009, 31(3): 431-435. [Wang Ninglian, Pu Jianchen. Icethickness, sounded by ground penetrating radar, on the Bayi Gla⁃cier in the Qilian Mountains, China[J]. Journal of Glaciology andGeocryology, 2009, 31(3): 431-435. ]
[18] 卿文武, 刘俊峰, 杨钰泉, 等. 基于气温的物质平衡模型的参数不确定性分析——以祁连山十一冰川为例[J]. 地球科学进展,2016, 31(9): 937-945. [Qing Wenwu, Liu Junfeng, Yang Yuquan,et al. Uncertainty analysis of the parameters of the temperature-in⁃dex method: A case study of Shiyi Glacier in Qilian Mountains[J].Advances in Earth Science, 2016, 31(9): 937-945. ]
[19] 王杰. 中国西部典型冰川反照率变化特征与参数化模拟[D]. 北京:中国科学院大学, 2012. [Wang Jie. The Spatiotemporal Varia⁃tions and Parameterizations of Albedo on Nine Representative Gla⁃ciers in Western China[D]. Beijing: University of Chinese Acade⁃my of Science, 2012. ]
[20] 吕利利, 颉耀文, 董龙龙. 基于不同地形校正模型的影像反射率对比分析[J]. 遥感技术与应用, 2017, 32(4): 751-759. [Lyu Lili,Xie Yaowen, Dong Longlong. The comparison of reflectance basedon different terrain correction[J]. Remote Sensing Technology andApplication, 2017, 32(4): 751-759. ]
[21] Soenen S A, Peddle D R, Coburn C A. SCS+C: A modified suncanopy-sensor topographic correction in forested terrain[J]. IEEETransactions on Geoscience and Remote Sensing, 2005, 43(9):2148-2159.[22] 钟耀武, 刘良云, 王纪华, 等. SCS+C地形辐射校正模型的应用分析研究[J]. 国土资源遥感, 2006, 70(4): 14-18. [Zhong Yaowu,Liu Liangyun, Wang Jihua, et al. The appllication of SCS+C meth⁃ods for topographic radiation correction[J]. Remote Sensing forLand and Resources, 2006, 70(4): 14-18. ]
[23] 王介民, 高峰. 关于地表反照率遥感反演的几个问题[J]. 遥感技术与应用, 2004, 19(5): 295-300. [Wang Jiemin, Gao Feng, Dis⁃cussion on the problems on land surface albedo retrieval by re⁃mote sensing data[J]. Remote Sensing Technology and Applica⁃tion, 2004, 19(5): 295-300. ]
[24] Roy D P, Zhang Hankun, Ju Junchang, et al. A general method tonormalize Landsat reflectance data to nadir BRDF adjusted reflec⁃tance[J]. Remote Sensing of Environment, 2016, 176: 255-271.[25] Liang S. Narrowband to broadband conversions of land surface al⁃bedo I: Algorithms[J]. Remote Sensing of Environment, 2001, 76(2): 213-238.[26] 潘海珠, 王建, 李弘毅. 祁连山区MODIS积雪反照率产品的精度验证及云下积雪反照率估算研究[J]. 冰川冻土, 2015, 37(1):49-57. [Pan Haizhu, Wang Jian, Li Hongyi. Accuracy validationof the MODIS snow albedo products and estimate of the snow albe⁃do under cloud over the Qilian Mountains[J]. Journal of Glaciologyand Geocryology, 2015, 37(1): 49-57. ]
[27] Liang S, Fang H, Chen M, et al. Validating MODIS land surface re⁃flectance and albedo products: methods and preliminary results[J].Remote Sensing of Environment, 2002, 83(1-2): 149-162.[28] 王坤, 井哲帆, 吴玉伟, 等. 祁连山七一冰川表面运动特征最新观测研究[J]. 冰川冻土, 2014, 36(3): 537-545. [Wang Kun, JingZhefan, Wu Yuwei, et al. Latest survey and study of surface flowfeatures of the Qiyi Glacier in the Qilian Mountains[J]. Journal ofGlaciology and Geocryology, 2014, 36(3): 537-545. ]
[29] 蒋熹. 冰雪反照率研究进展[J]. 冰川冻土, 2006, 28(5): 728-738. [Jiang Xi. Progress in the research of snow and ice albedo[J].Journal of Glaciology and Geocryology, 2006, 28(5): 728-738. ]
[30] 张一平, 李佑荣, 王进欣, 等. 低纬高原城市冬季南北朝向室内温湿特征的初步分析[J]. 热带气象学报, 2001, 17(3): 265-272.[Zhang Yiping, Li Yourong, Wang Jinxin, et al. The characteristicsof indoor air temperature and humidity of south and north side ofcity buildings in winter on low-latitude plateau[J]. Journal of Trop⁃ical Meteorology, 2001, 17(3): 265-272. ]
[31] Greuell W, Knap W H, Smeets P C. Elevational changes in meteo⁃rological variables along a midlatitude glacier during summer[J].Journal of Geophysical Research: Atmospheres, 1997, 102(D22):25941-25954.[32] 周石硚, 康世昌, 高坛光, 等. 纳木错流域扎当冰川径流对气温和降水形态变化的响应[J]. 科学通报, 2010, 55(18): 1781-1788. [Zhou Shiqiao, Kang Shichang, Gao Tanguang, et al. Re⁃sponse of Zhadang Glacier runoff in Nam Co Basin, Tibet, tochanges in air temperature and precipitation form[J]. Chinese Sci⁃ence Bulletin, 2010, 55(18): 1781-1788. ]
[33] 蒋熹, 王宁练, 蒲健辰, 等. 夏季消融期祁连山“七一”冰川反照率初步研究[J]. 冰川冻土, 2008, 30(5): 752-760. [Jiang Xi,Wang Ninglian, Pu Jianchen, et al. The albedo on the Qiyi Glacierin Qilian Mountains during the ablation period[J]. Journal of Glaci⁃ology and Geocryology, 2008, 30(5): 752-760. ] |