水土资源

柴达木盆地典型流域地表水-地下水转化关系及水化学特征

展开
  • 1.青海大学三江源生态与高原农牧业国家重点实验室/水利部江河源区水生态治理与保护重点实验室/水利电力学院/黄河上游生态保护与高质量发展实验室,青海 西宁 810016
    2.清华大学水沙科学与水利水电工程国家重点实验室,北京 100084
杨海娇(1989-),女,博士研究生,讲师,主要从事水文学及水资源的研究工作. E-mail: yyeezzii@163.com

收稿日期: 2022-03-17

  修回日期: 2022-05-27

  网络出版日期: 2022-10-25

基金资助

青海省科技计划-重大科技专项(2021-SF-A6);清华大学水沙科学与水利水电工程国家重点实验室开放基金项目(sklhse-2019-A-04)

Interaction between surface water and groundwater and hydrochemical characteristics in the typical watersheds of the Qaidam Basin

Expand
  • 1. State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Water Ecology Remediation and Protection at Headwater Regions of Big Rivers, Ministry of Water Resources, School of Water Resources and Electric Power, Laboratory of Ecological Protection and High Quality Development in the Upper Yellow River, Qinghai Province, Qinghai University, Xining 810016, Qinghai, China
    2. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China

Received date: 2022-03-17

  Revised date: 2022-05-27

  Online published: 2022-10-25

摘要

柴达木盆地是典型的干旱内陆区,认识其地表水-地下水转化关系、水化学特征及沿程变化规律,对区域水资源开发利用和生态保护有重要意义。在现场调查和水文地质条件分析的基础上,采用水化学、统计分析等方法,研究了典型流域地表水-地下水转化关系、水化学特征及差异性。结果表明:(1) 根据地质构造、地层和地形对水力联系的控制作用,将地表水-地下水转化关系分为基岩阻隔+岩性控制型、岩性控制型和岩性控制+水文气象影响型。(2) 从山区到尾闾,地表水和地下水水化学类型从Ca型转变为Na型或Mg型、从重碳酸根型转变为氯离子型;沿程水化学影响机制从水-岩作用为主逐渐过渡到蒸发-沉淀作用占主导;受基岩阻隔和岩性控制的影响,山间河谷和冲洪积扇前缘地表水-地下水转化关系的转变使沿程水化学特征的变化规律发生局部逆转。(3) 因含水层岩性差异,盆地南部地表水、地下水中Na+、Cl-和SO42-占主导,东部、北部Ca2+和HCO3-占主导,且北部F-浓度较其他流域高。

本文引用格式

杨海娇,魏加华,任倩慧 . 柴达木盆地典型流域地表水-地下水转化关系及水化学特征[J]. 干旱区研究, 2022 , 39(5) : 1543 -1554 . DOI: 10.13866/j.azr.2022.05.19

Abstract

The Qaidam Basin is a typical arid inland area in China. Recognizing the interaction between surface water (SW) and groundwater (GW), characteristics of water chemistry, and change law along the river in the basin is significant for developing and utilizing regional water resources and ecological protection laws. Hydrochemical and statistical analysis methods were used to study the SW-GW interactions, with the hydrochemical characteristics and differences being analyzed based on field investigation and analysis. According to the controlling effect of geological structure, strata, and landform on the hydraulic connection, the SW-GW interactions are divided into the following types: bedrock barrier + lithology control, lithology control + hydrometeorological influence, and lithology control. The hydrochemical types change from Ca to Na or Mg and from bicarbonate to chloride ion from the mountainous area to the tail area. The changing trends of the hydrochemical influence mechanism along the flow paths gradually change from water-rock interaction to evaporation-precipitation. The transformation of the SW-GW interaction in the inter-mountain valley and front of the alluvial-proluvial fan causes a local reversal of the changing law of hydrochemical characteristics along the river that are influenced by a bedrock barrier and lithology control. This is due to the lithology differences of aquifer, Na+, Cl-, and SO42- that are dominant in SW and GW in the south. Ca2+ and HCO3- are dominant in the north and east, and the F- concentration in the north is higher compared to other watersheds.

参考文献

[1] Tomas B F, Caineta J, Nanteza J. Global assessment of groundwater sustainability based on storage anomalies[J]. Geophysical Research Letters, 2017, 44(22): 11445.
[2] 徐威. 那棱格勒河冲洪积平原地下水循环模式及其对人类活动的响应研究[D]. 长春: 吉林大学, 2015.
[2] [Xu Wei. Groundwater Cycle Patterns and Its Response to Human Activities in Nalenggele Alluvial-proluvial Plain[D]. Changchun: Jilin University, 2015. ]
[3] Lambs L. Interactions between groundwater and surface water at river banks and the confluence of rivers[J]. Journal of Hydrology, 2004, 288(3): 312-326.
[4] Kalbus E, Reinstorf F, Schirmer M. Measuring methods for groundwater, surface water and their interactions: A review[J]. Hydrology and Earth System Sciences, 2006, 10(6): 873-887.
[5] Steelman C M, Kennedy C S, Donovan C, et al. Electrical resistivity dynamics beneath a fractured sedimentary bedrock riverbed in response to temperature and groundwater-surface water exchange[J]. Hydrology and Earth System Sciences, 2017, 21(6): 3105-3123.
[6] Kumar M, Ramanathan A, Keshari A K. Understanding the extent of interactions between groundwater and surface water through major ion chemistry and multivariate statistical techniques[J]. Hydrological Processes, 2009, 23(2): 297-310.
[7] 李健, 王建军, 黄勇, 等. 青海德令哈市巴音河流域水资源开发利用[J]. 干旱区研究, 2009, 26(4): 483-489.
[7] [Li Jian, Wang Jianjun, Huang Yong, et al. Analysis on the exploitation and utilization of water resources in the Bayin River watershed, Delingha city, Qinghai Province[J]. Arid Zone Research, 2009, 26(4): 483-489. ]
[8] Liu W G, Xiao Y L, Wang H P, et al. Chlorine isotopic geochemistry of salt lakes in the Qaidam Basin, China[J]. Chemical Geology, 1997, 136: 271-279.
[9] Lowenstein T K, Risacher F. Closed basin brine evolution and the influence of Ca- Cl inflow waters: Death Valley and Bristol dry lake California, Qaidam Basin, China, and Salar de Atacama, Chile[J]. Aquatic Geochemistry, 2009, 15(1): 71-94.
[10] 李文鹏, 何庆成. 察尔汗盐湖物质来源的讨论[J]. 河北地质学院学报, 1993, 16(3): 254-263.
[10] [Li Wenpeng, He Qingcheng. Discussion on the origins of the material in Qarhan Salt Lake[J]. Journal of Hebei College of Geology, 1993, 16(3): 254-263. ]
[11] 李文鹏, 周宏春, 周仰效, 等. 中国西北典型干旱区地下水流系统[M]. 北京: 地震出版社, 1995: 1-24.
[11] [Li Wenpeng, Zhou Hongchun, Zhou Yangxiao, et al. Groundwater Flow System in Typical Arid Area of Northwest China[M]. Beijing: Seismological Press, 1995: 1-24. ]
[12] Tan H B, Rao W B, Chen J S, et al. Chemical and isotopic approach to groundwater cycle in western Qaidam Basin, China[J]. Chinese Geographical Science, 2009, 19(4): 357-364.
[13] Zhao D, Wang G C, Liao F, et al. Groundwater-surface water interactions derived by hydrochemical and isotopic (222Rn, deuterium, oxygen-18) tracers in the Nomhon area, Qaidam Basin, NW China[J]. Journal of Hydrology, 2018, 565: 650-661.
[14] 文广超, 王文科, 段磊, 等. 基于水化学和稳定同位素定量评价巴音河流域地表水与地下水转化关系[J]. 干旱区地理, 2018, 41(4): 734-743.
[14] [Wen Guangchao, Wang Wenke, Duan Lei, et al. Quantitatively evaluating exchanging relationship between river water and groundwater in Bayin River Basin of Northwest China using hydrochemistry and stable isotope[J]. Arid Land Geography, 2018, 41(4): 734-743. ]
[15] Xiao Y, Shao J L, Cui Y L, et al. Groundwater circulation and hydrogeochemical evolution in Nomhon of Qaidam Basin, Northwest China[J]. Journal of Earth System Science, 2017, 126(26): 1-26.
[16] 肖勇. 柴达木盆地南缘地下水循环演化模式及其变化趋势研究[D]. 北京: 中国地质大学(北京), 2018.
[16] [Xiao Yong. Groundwater Circulation Patterns and Iits Change Trending Southern Qaidam Basin, Northwest China[D]. Beijing: China University of Geosciences (Beijing), 2018. ]
[17] 王永贵, 郭宏业, 李健, 等. 柴达木盆地地下水资源及其环境问题调查评价[M]. 北京: 地质出版社, 2008: 49-211.
[17] [Wang Yonggui, Guo Hongye, Li Jian, et al. Investgation and Assessment of Groundwater Resources and Their Environmental Issues in the Qaidam Basin[M]. Beijing: Geological Publishing House, 2008: 49-211. ]
[18] 赵振, 刘振英, 许伟林, 等. 青海省德令哈市巴音河冲洪积扇供水水文地质详查报告[R]. 西宁:青海省环境地质勘查局, 2017.
[18] [Zhao Zhen, Liu Zhenying, Xu Weilin, et al. Hydrogeological Survey of alluvial Fan Water Supply in Bayin River, Delingha City, Qinghai Province[R]. Xining: Qinghai Environmental Geology Exploration Bureau, 2017. ]
[19] 党学亚, 张戈, 顾小凡, 等.柴达木盆地格尔木河—巴音河流域1:5 万水文地质调查报告[R]. 西安: 中国地质调查局西安地质调查中心, 2016.
[19] [Dang Xueya, Zhang Ge, Gu Xiaofan, et al. A 1:50000 Hydrogeological Survey in Golmud-Bayin River Basin, Qaidam Basin[R]. Xi’an: Xi’an Geological Survey Center, China Geological Survey, 2016. ]
[20] 张雨航. 柴达木盆地蒸散量的估算及其影响因素分析[D]. 北京: 中国地质大学(北京), 2012.
[20] [Zhang Yuhang. Evapotranspiration Estimation of Qaidam Basin and Its Impact Factors[D]. Beijing: China University of Geosciences (Beijing), 2012. ]
[21] 范梦歌, 刘九夫. 基于聚类分析的水文相似流域研究[J]. 水利水运工程学报, 2015(4): 106-111.
[21] [Fan Mengge, Liu Jiufu. Analysis of hydrologically similar basins based on clustering analysis[J]. Hydro-Science and Engineering, 2015(4): 106-111.]
[22] 王瑞久. 三线图解及其水文地质解释[J]. 工程勘察, 1983(6): 6-11.
[22] [Wang Ruijiu. Piper ternary and its hydrogeological interpretation[J]. Engineering Investigation, 1983(6): 6-11. ]
[23] Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
[24] 张春潮, 侯新伟, 李向全, 等. 三姑泉域岩溶地下水水化学特征及形成变化机制[J]. 水文地质工程地质, 2021, 48(3): 62-71.
[24] [Zhang Chunchao, Hou Xinwei, Li Xiangquan, et al. Hydrogeochemical characteristics and evolution mechanism of karst groundwater in the catchment area of the Sangu Spring[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 62-71. ]
[25] 魏忠义, 汤奇成. 西北干旱区地表水与地下水相互转化及总水资源的计算[J]. 干旱区资源与环境, 1997, 11(4): 2-8.
[25] [Wei Zhongyi, Tang Qicheng. Interaction between surface water and groundwater resources and calculation of total amount of water resources in the arid zone of Northwest China[J]. Journal of Arid Land Resources and Environment, 1997, 11(4): 2-8. ]
[26] 杨绍康, 秦光雄, 贾君, 等.柴达木盆地都兰县幅、夏日哈幅1:5 万水文地质调查报告[R]. 西宁: 青海省环境地质勘查局, 2016.
[26] [Yang Shaokang, Qin Guangxiong, Jia Jun, et al. A 1: 50000 Hydrogeological Survey Report of Dulan County and Xiariha Mappable Unit in Qaidam Basin[R]. Xining: Qinghai Environmental Geology Exploration Bureau, 2016. ]
[27] 张文琦, 董少刚, 马铭言, 等. 岱海盆地地下水化学特征及成因[J]. 干旱区研究, 2021, 38(6): 1546-1555.
[27] [Zhang Wenqi, Dong Shaogang, Ma Mingyan, et al. Chemical characteristics and origin of groundwater in the Daihai basin[J]. Arid Zone Research, 2021, 38(6): 1546-1555. ]
[28] 王宇航. 格尔木河流域地下水化学演化规律和水循环模式[D]. 西安: 长安大学, 2014.
[28] [Wang Yuhang. Geochemistry Evolution and Water Cycle Patterns of Groundwater in Golmud River Basin[D]. Xi’an: Chang’an University, 2014. ]
[29] 白凡, 周金龙, 曾妍妍. 吐鲁番盆地平原区地下水水化学特征及水质评价[J]. 干旱区研究, 2022, 39(2): 419-428.
[29] [Bai Fan, Zhou Jinlong, Zeng Yanyan. Hydrochemical characterist ics and quality of groundwater in the plains of the Turpan Basin[J]. Arid Zone Research, 2022, 39(2): 419-428. ]
文章导航

/