[1] Nicolini G, Fratini G, Avilov V, et al. Performance of eddy-covariance measurements in fetch-limited applications [J]. Theoretical and Applied Climatology, 2017, 127(3-4): 829-840.
[2] Arriga N, Rannik Ü, Aubinet M, et al. Experimental validation of footprint models for eddy covariance CO2 flux measurements above grassland by means of natural and artificial tracers [J]. Agricultural and Forest Meteorology, 2017, 242: 75-84.
[3] Pandey D, Agrawal M, Pandey J S. Carbon footprint: current methods of estimation [J]. Environmental Monitoring and Assessment, 2011, 178(1-4): 135-160.
[4] 郭智娟, 龚元, 张凯迪, 等. 复杂下垫面下不透水层的 CO2 通量足迹分析——以上海市奉贤大学城为例[J]. 环境科学学报, 2018, 38(2): 772-779.[Guo Zhijuan, Gong Yuan, Zhang Kaidi, et al. CO2 flux footprints of impervious layer on complex land surface: A case study at the Fengxian College Park, Shanghai[J]. Acta Scientiae Circumstantiae, 2018, 38(2): 772-779.]
[5] 王江涛, 周剑虹, 欧强, 等. 崇明东滩滨海围垦湿地CO2通量贡献区分析[J]. 生态与农村环境学报, 2014, 30(5): 588-594.[Wang Jiangtao, Zhou Jianhong, Ou Qiang, et al. CO2 flux footprint analysis of coastal polder wetlands in Dongtan of Chongming[J]. Journal of Ecology and Rural Environment, 2014, 30(5): 588-594.]
[6] Neftel A, Spirig C, Ammann C. Application and test of a simple tool for operational footprint evaluations[J]. Environmental Pollution, 2008, 152(3): 644-652.
[7] Sogachev A, Dellwik E. Flux footprints for a tall tower in a land–water mosaic area: A case study of the area around the Risø tower[J]. Agricultural and Forest Meteorology, 2017, 237: 326-339.
[8] Fry J, Lenzen M, Jin Y, et al. Assessing carbon footprints of cities under limited information[J]. Journal of Cleaner Production, 2018, 176: 1254-1270.
[9] Zhang F W, Liu A H, Li Y N, et al. CO2 flux in alpine wetland ecosystem on the Qinghai-Tibetan Plateau, China[J]. Acta Ecologica Sinica, 2008, 28(2): 453-462.
[10] 龚元, 赵敏, 姚鑫, 等. 城市生态系统复合下垫面碳通量特征——以上海市奉贤大学城为例[J]. 长江流域资源与环境, 2017, 26(1): 91-99.[Gong Yuan, Zhao Min, Yao Xin, et al. Study on carbon flux characteristics of the underlying surface of urban ecosystem—a case study of Shanghai Fengxian university city[J]. Resources and Environment in the Yangtze Basin, 2017, 26(1): 91-99.]
[11] Meyer W, Kondrlovà E, Koerber G. Evaporation of perennial semi-arid woodland in southeastern Australia is adapted for irregular but common dry periods[J]. Hydrological Processes, 2015, 29 (17): 3714-3726.
[12] 吴东星, 李国栋, 张茜. 华北平原冬小麦农田生态系统通量贡献区[J]. 应用生态学报, 2017, 28(11): 3663-3674.[Wu Dongxin, Li Guodong, Zhang Xi. Flux footprint of winter wheat farmland ecosystem in the North China Plain[J]. Chinese Journal of Applied Ecology, 2017, 28(11): 3663-3674.]
[13] Yang W B, Yuan C S, Tong C, et al. Diurnal variation of CO2, CH4, and N2O emission fluxes continuously monitored in-situ in three environmental habitats in a subtropical estuarine wetland[J]. Marine Pollution Bulletin, 2017, 119(1): 289-298.
[14] 李守娟, 马杰, 唐立松, 等. 梭梭群落碳交换的尺度转换研究: 从叶片到群落[J]. 干旱区研究, 2016, 33(2):362-370.[Li Shoujuan, Ma Jie, Tang Lisong, et al. Scale transformation of carbon exchange over Haloxylon ammodendron community: From leaf to community[J]. Arid Zone Research, 2016, 33(2):362-370.]
[15] 马小红, 苏永红, 鱼腾飞, 等. 荒漠河岸胡杨林生态系统涡度相关通量数据处理与质量控制方法研[J].干旱区地理, 2015, 38(3): 626-635.[Ma Xiaohong, Su Yonghong, Yu Tengfei, et al. Data processing and quality control of eddy covariance in desert riparian forest[J]. Arid Land Geography, 2015, 38(3): 626-635.]
[16] Tortell P, Long M, Payne C, et al. Spatial distribution of pCO2, ΔO2/Ar and dimethylsulfide (DMS) in polynya waters and the sea ice zone of the Amundsen Sea, Antarctica[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2012, 71: 77-93.
[17] Rosane G, Tavano V M, Mendes C R, et al. Sea-air CO2 fluxes and pCO2 variability in the Northern Antarctic Peninsula during three summer periods (2008-2010)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2017, 31(1): 1-12.
[18] Wrobel I. Monthly dynamics of carbon dioxide exchange across the sea surface of the Arctic Ocean in response to changes in gas transfer velocity and partial pressure of CO2 in 2010[J]. Oceanologia, 2017, 59(4): 445-459.
[19] Berryman E, Frank J, Massman W, et al. Using a Bayesian framework to account for advection in seven years of snowpack CO2 fluxes in a mortality-impacted subalpine forest[J]. Agricultural and Forest Meteorology, 2018, 249: 420-433.
[20] 赵亮, 徐世晓, 伏玉玲, 等. 积雪对藏北高寒草甸CO2和水汽通量的影响[J]. 草地学报, 2005, 13(3): 242-247.[Zhao Liang, Xu Shixiao, Fu Yuling, et al. Effects of snow cover on CO2 flux of northern alpine meadow on Qinghai-Tibetan plateau[J]. Acta Agrestia Sinica, 2005, 13(3): 242-247.]
[21] Guo X F, Yang K, Zhao L, et al. Critical evaluation of scalar roughness length parametrizations over a melting valley glacier[J]. Boundary-layer Meteorology, 2011, 139(2): 307-332.
[22] Litt M, Sicart J, Helgason W, et al. Turbulence characteristics in the atmospheric surface layer for different wind regimes over the tropical Zongo Glacier (Bolivia, 16°S)[J]. Boundary-layer Meteorology, 2015, 154(3): 471-495.
[23] Lund M, Stiegler C, Abermann J, et al. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland[J]. Ambio, 2017, 46: 81-93.
[24] Yao J, Gu L, Han H, et al. The surface energy budget on the debris-covered Koxkar Glacier in China[J]. Environmental Earth Sciences, 2014, 72(11): 4503-4510.
[25] Krawczyk W, Bartoszewski S. Crustal solute fluxes and transient carbon dioxide drawdown in the Scottbreen Basin, Svalbard in 2002[J]. Journal of Hydrology, 2008, 362(3-4): 206-219.
[26] Donnini M, Frondini F, Probst J, et al. Chemical weathering and consumption of atmospheric carbon dioxide in the Alpine region[J]. Global and Planetary Change, 2016, 136: 65-81.
[27] Galeczka I, Sigurdsson G, Eiriksdottir E, et al. The chemical composition of rivers and snow affected by the 2014/2015 Bárðarbunga eruption, Iceland[J]. Journal of Volcanology and Geothermal Research, 2016, 316: 101-119.
[28] Feng F, Li Z Q , Jin S, et al. Hydrochemical characteristics and solute dynamics of meltwater runoff of Urumqi Glacier No.1, eastern Tianshan, northwest China[J]. Journal of Mountain Science, 2012, 9(4): 472-482.
[29] 王叶堂, 侯书贵, 鲁安新,等. 近40年来天山东段冰川变化及其对气候的响应[J]. 干旱区地理, 2008, 31(6): 813-821.[Wang Yetang, Hou Shugui, Lu Anxin, et al. Response of glacier variations in the eastern Tianshan Mountains to climate change during the last 40 years[J]. Arid Land Geography, 2008, 31(6): 813-821.]
[30] Farinotti D, Longuevergne L, Moholdt G, et al. Substantial glacier mass loss in the Tien Shan over the past 50 years[J]. Nature Geoscience, 2015, 8(9): 716-722.
[31] 韩海东, 刘时银, 丁永建, 等. 科其喀尔巴西冰川的近地层基本气象特征[J]. 冰川冻土, 2008, 30(6): 967-975. [Han Haidong, Liu Shiyin, Ding Yongjian, et al. Near-surface meteorological characteristics on the Koxkar Baxi Glacier, Tianshan[J]. Journal of Glaciology and Geocryology, 2008, 30(6): 967-975.]
[32] 谢昌卫, 丁永建, 刘时银, 等. 近 30年来托木尔峰南麓科其喀尔冰川冰舌区变化[J]. 冰川冻土, 2006, 28(5): 672-677.[Xie Changwei, DingYongjian, Liu Shiyin, et al. Variation of Keqikaer glacier terminus in Tomur peak during last30 years[J]. Journal of Glaciology and Geocryology, 2006, 28(5): 672-677.]
[33] 王玉玉, 姚济敏, 韩海东, 等. 科其喀尔冰川表碛区空气动力学粗糙度分析[J]. 高原气象, 2014, 33(3): 762-768.[Wang Yuyu, Yao Jimin, Han Haidong, et al. Analysis of aerodynamic roughness of the debris-covered Keqicar Glacier[J]. Plateau Meteorology, 2014, 33(3): 762-768.]
[34] Wharton S, Ma S, Baldocchi D, et al. Influence of regional nighttime atmospheric regimes on canopy turbulence and gradients at a closed and open forest in mountain-valley terrain[J]. Agricultural and Forest Meteorology, 2017, 237: 18-29
[35] Gu S, Tang Y H, Du M Y, et al. Short-term variation of CO2 flux in relation to environmental controls in an alpine meadow on the Qinghai-Tibetan plateau[J]. Journal of Geophysical Research, 2003, 108: 4670-4679.
[36] Zhu Z, Sun X, Wen X, et al. Study on the processing method of nighttime CO 2 eddy covariance flux data in ChinaFLUX[J]. Science in China Series D: Earth Sciences, 2006, 49(2): 36-46.
[37] Risch A C, Frank D A. Diurnal and seasonal patterns in ecosystem CO2 fluxes and their controls in a temperate grassland[J]. Rangeland Ecology & Management, 2010, 63(1): 62-71.
[38] Kormann R, Meixner F X. An analytical footprint model for non-Neutral stratification[J].Boundary-layer Meteorology, 2001, 99(2): 207-224.
[39] 贾庆宇, 周广胜, 王宇. 沈阳城市 CO2 通量的足迹分析[J]. 环境科学学报, 2010, 30(8): 1682-1687.[Jia Qingyu, Zhou Guangsheng, Wang Yu. Footprint characteristics of CO2 flux over the urban district of Shenyang[J]. Acta Scientiae Circumstantiae, 2010, 30(8): 1682-1687.]
[40] 张勇, 刘时银, 韩海东, 等. 天山南坡科其卡尔巴契冰川消融期气候特征分析[J]. 冰川冻土, 2004, 26(5): 545-550.[Zhang Yong, Liu Shiyin, Han Haidong, et al. Characteristics of climate on the Keqicar glacier on the south slopes of the Tianshan Mountains during ablation period[J]. Journal of Glaciology and Geocryology, 2004, 26(5): 545-550.]
[41] 王玉玉, 姚济敏, 韩海东, 等. 天山南坡科其喀尔冰川表碛区小气候特征研究[J]. 冰川冻土, 2014, 36(3): 546-554.[Wang Yuyu, Yao Jimin, Han Haidong, et al. Analysis of the microclimatic characteristics in the debris-covered area of the Koxkar Glacier on the southern slope of the Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2014, 36(3): 546-554.]
[42] Fortuniak K, Pawlak W, Bednorz L, et al. Methane and carbon dioxide fluxes of a temperate mire in Central Europe[J]. Agricultural and Forest Meteorology, 2017, 232: 306-318.
[43] Niu H W, Kang S C, Shi X F, et al. Water-soluble elements in snow and ice on Mt. Yulong[J]. Science of the Total Environment, 2017, 574: 889-900.
[44] Mouri G. Baseline characteristics of a debris-covered snow-covered gorge in a typical Japanese mountainous terrain[J]. Gondwana Research, 2016, 35: 155-163. |