干旱区研究 ›› 2024, Vol. 41 ›› Issue (11): 1921-1935.doi: 10.13866/j.azr.2024.11.12 cstr: 32277.14.AZR.20241112

• 生态与环境 • 上一篇    下一篇

气候和采矿活动对荒漠化草原露天矿区植被的影响

王市委1(), 张浩斌1, 郭文兵2, 马超1,3,4()   

  1. 1.河南理工大学测绘与国土信息工程学院,河南 焦作 454003
    2.河南理工大学能源科学与工程学院,河南 焦作 454003
    3.河南理工大学自然资源部矿山时空信息与生态修复重点实验室,河南 焦作 454003
    4.河南理工大学黄河流域耕地保护与城乡高质量发展研究中心,河南 焦作 454003
  • 收稿日期:2024-03-18 修回日期:2024-06-25 出版日期:2024-11-15 发布日期:2024-11-29
  • 通讯作者: 马超. E-mail: mac@hpu.edu.cn
  • 作者简介:王市委(1998-),男,硕士研究生,主要从事生态环境遥感. E-mail: 212204020073@home.hpu.edu.cn
  • 基金资助:
    国家基金委区域创新发展联合基金重点项目(U21A20108);河南省高校科技创新团队支持计划(22IRTSTHN008)

Effects of climate and mining activities on vegetation in open-pit mining in desertification grassland

WANG Shiwei1(), ZHANG Haobin1, GUO Wenbing2, MA Chao1,3,4()   

  1. 1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China
    2. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China
    3. Key Laboratory of Spatio-Temporal Information and Ecological Restoration of Mines (MNR), Henan Polytechnic University, Jiaozuo 454003, Henan, China
    4. Research Centre of Arable Land Protection and Urban-Rural High-Quality Development in Yellow River Basin, Henan Polytechnic University, Jiaozuo 454003, Henan, China
  • Received:2024-03-18 Revised:2024-06-25 Published:2024-11-15 Online:2024-11-29

摘要:

研究露天矿采矿坑与排土场的植被破坏及复垦状况,可为矿区植被损伤诊断、植被自然恢复和人工修复评估提供生态学依据。基于Sentinel-2数据计算非红边植被指数(NDVI、EVI)和红边植被指数(RENDVI、MSR_RE、CIre、TCARI)为生态修复评价指标;采用回归分析、趋势分析和相关性分析方法,分析2018—2021年采矿活动和气候变化对5个露天矿(乌兰哈达露天矿、经纬露天矿、武家塔露天矿、狼窝渠露天矿和鸿盛源露天矿)植被长势的影响,获取矿区采矿坑、排土场和缓冲区植被的时空变化规律。结果表明:(1) 鸿盛源露天矿采矿坑植被受损程度最严重(拟合斜率k=-0.2996),但其排土场人工修复效果最好(拟合斜率k=0.1364)。(2) 对比5个露天煤矿5 km缓冲区,发现逐像元RENDVI变化趋势均以退化为主,退化面积均占50%以上。(3) 在荒漠化草原地区,植被NDVI变化受降水的影响小于气温。露天开采会加剧荒漠化草原植被的退化,排土场的人工修复对改善区域植被生长状况成效显著。

关键词: 荒漠化草原, 神东矿区, 露天开采, 排土场, 植被指数, 生态修复

Abstract:

In this study, we aimed to examine the vegetation damage and reclamation status of mining pits and waste dumps in open-pit mines and provide an ecological basis for diagnosing vegetation damage in mining areas and assessing natural and artificial vegetation restoration. Using Sentinel-2 data, we calculated non-red edge vegetation indices (Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index) and red edge vegetation indices (Red Edge Normalized Difference Vegetation Index (RENDVI), Modified Red Edge Simple Ratio, Chlorophyll Index red edge, and Transformed Chlorophyll Absorption in Reflectance Index) as indicators for evaluating ecological restoration. We employed regression analysis, trend analysis, and correlation analysis to assess the impacts of mining activities and climate change on the ecological environment of five open-pit mines (Wulanhada, Jingwei, Wujiata, Langwoqu, and Hongshengyuan) from 2018 to 2021. This approach enabled us to identify the spatial and temporal patterns of change in vegetation across mining pits, waste dumps, and buffer zones. The results revealed the following: (1) The Hongshengyuan open-pit mine had the most severe vegetation damage (k=-0.2996) but had the most effective manual restoration on its waste dump (k=0.1364). (2) A comparison of the 5 km buffer zones around the five open-pit mines indicated that the pixel-by-pixel RENDVI trends predominantly showed degradation, with over 50% of the areas exhibiting signs of decline. (3) In the desertified grassland area, temperature had a more significant impact on vegetation NDVI than temperature. Open-pit mining exacerbates the ecological degradation of desertified grassland vegetation, while artificial restoration of waste dumps is highly effective in improving the ecological conditions of regional vegetation

Key words: desertification grassland, Shendong mining area, open-pit mining, waste dump, vegetation index, ecological restoration