干旱区研究 ›› 2023, Vol. 40 ›› Issue (11): 1815-1823.doi: 10.13866/j.azr.2023.11.11
收稿日期:
2023-03-30
修回日期:
2023-05-30
出版日期:
2023-11-15
发布日期:
2023-12-01
通讯作者:
何彤慧. E-mail: 作者简介:
赵明涛(1998-),男,硕士研究生,主要从事土壤污染修复和湿地生态监测及恢复研究. E-mail: 基金资助:
ZHAO Mingtao(),WANG Chaoqun,LIANG Meiqi,HE Tonghui()
Received:
2023-03-30
Revised:
2023-05-30
Online:
2023-11-15
Published:
2023-12-01
摘要:
了解沉水植物群落物种多样性对于底泥氮磷营养水平的响应,可以明确两者之间的作用关系,对于研究区域乃至类似地区湿地植被和环境的时空变化、生境修复、污染治理及规划管理等,都有直接的理论和实践意义。本研究以银川平原湖泊和沟渠水域湿地为研究区,进行野外沉水植物群落调查,获取底泥环境养分。采用群落学分类法筛选出三种典型沉水植物群落,对底泥进行了氮磷营养水平等级评价。采用结构方程模型分析典型沉水植物群落物种多样性及底泥氮磷营养水平等级各组分间的作用关系。得到以下结论:(1) 银川平原湖泊和沟渠水域湿地常见沉水植物有8种。典型沉水植物群落为篦齿眼子菜(Potamogeton pectinatus)群落、穗状狐尾藻(Myriophyllum spicatum)群落和菹草(Potamogeton crispus)群落。菹草群落物种组成多样性和物种贡献的复杂程度高,且物种分布均匀,篦齿眼子菜群落物种呈现集群化或斑块化分布。(2) 银川平原湖泊和沟渠水域湿地底泥氮磷营养水平共存在三种等级(丰富、适量、贫乏),主要以适量和贫乏等级为主。(3) 篦齿眼子菜群落和穗状狐尾藻群落主要生长分布在贫乏和适度的底泥营养水平上,菹草群落主要生长分布在贫乏、适度和丰富的底泥营养水平上。(4) 底泥氮磷营养水平对三种典型沉水植物群落物种多样性具有显著正效应,能够促进群落多样性指数增高。三种典型沉水植物群落多样性主要受到物种均匀度的影响。底泥氮磷营养水平主要受到P元素的影响。
赵明涛, 王超群, 梁美琪, 何彤慧. 银川平原湿地典型沉水植物群落物种多样性对底泥的响应[J]. 干旱区研究, 2023, 40(11): 1815-1823.
ZHAO Mingtao, WANG Chaoqun, LIANG Meiqi, HE Tonghui. Response of species diversity of typical submerged plant communities to sediment in Yinchuan Plain wetlands[J]. Arid Zone Research, 2023, 40(11): 1815-1823.
表2
银川平原湿地常见沉水植物名录"
序号 | 种名 | 拉丁学名 | 属名 | 科名 |
---|---|---|---|---|
1 | 篦齿眼子菜 | Potamogeton pectinatus | 眼子菜属 | 眼子菜科 |
2 | 大茨藻 | Najas marina | 茨藻属 | 茨藻科 |
3 | 穗状狐尾藻 | Myriophyllum spicatum | 狐尾藻属 | 小二仙草科 |
4 | 金鱼藻 | Ceratophyllum demersum | 金鱼藻属 | 金鱼藻科 |
5 | 菹草 | Potamogeton crispus | 眼子菜属 | 眼子菜科 |
6 | 小茨藻 | Najas minor | 茨藻属 | 茨藻科 |
7 | 穿叶眼子菜 | Potamogeton perfoliatus | 眼子菜属 | 眼子菜科 |
8 | 狸藻 | Utricularia vulgaris | 狸藻属 | 狸藻科 |
[1] |
Anthony Ryle, Hilary Beard. The integrative effect of reformulation: Cognitive analytic therapy with a patient with borderline personality disorder[J]. British Journal of Medical Psychology, 2011, 66(3): 249-258.
doi: 10.1111/papt.1993.66.issue-3 |
[2] |
Roni P, Hanson K, Beechie T. Global review of the physical and biological effectiveness of stream habitat rehabilitation techniques[J]. North American Journal of Fisheries Management, 2008, 28(3): 856-890.
doi: 10.1577/M06-169.1 |
[3] | 李鹤男, 孙永利, 李鹏峰, 等. 沉水植物水体底质生态修复研究进展[J]. 中国环保产业, 2021, 281(11): 37-41. |
[Li Henan, Sun Yongli, Li Pengfeng, et al. Research progress on the ecological remediation of water sediment by submerged plants[J]. China Environmental Protection Industry, 2021, 281(11): 37-41.] | |
[4] |
Gumbricht T. Nutrient removal processes in freshwater submersed macrophyte systems[J]. Ecological Engineering, 1993, 2(1): 1-30.
doi: 10.1016/0925-8574(93)90024-A |
[5] | 代蕾. 沉水植物对不同水质的净化作用及相关机理研究[D]. 重庆: 重庆大学, 2018. |
[Dai Lei. Purification and Related Mechanism of Submerged Macrophytes on Different Water Quality[D]. Chongqiong: Chongqiong University, 2018.] | |
[6] | 王兰涛. 沉水植物根际微生物群落演替特征及对氮磷削减效果的研究[D]. 石家庄: 河北地质大学, 2022. |
[Wan Lantao. Succession Characteristics of Rhizosphere Microbial Communities of Submerged Plants and their Effects on Nitrogen and Phosphorus Reduction[D]. Shijiazhuang: Hebei GEO University, 2022.] | |
[7] | 许木启, 黄玉瑶. 受损水域生态系统恢复与重建研究[J]. 生态学报, 1998, 18(5): 101-112. |
[Xu Muqi, Huang Yuyao. Restoration and reestablishment of the damaged ecosystem of inland waters[J]. Acta Ecologica Sinica, 1998, 18(5): 101-112.] | |
[8] |
Kemp W M, Batleson R, Bergstrom P, et al. Habitat requirements for submerged aquatic vegetation in Chesapeake Bay: Water quality, light regime, and physical-chemical factors[J]. Estuaries, 2004, 27(3): 363-377.
doi: 10.1007/BF02803529 |
[9] | 常诏峰. 高原沉水植物对铵盐的生理响应研究[D]. 拉萨: 西藏大学, 2021. |
[Chang Shaofeng. Physiological Response Study on Plateau Submerged Macrophytes of Ammonium[D]. Lhasa: Tibet University, 2021.] | |
[10] | 陈国玲. 滇池流域沉水植物对水体氨氮浓度指示作用的研究[D]. 昆明: 云南师范大学, 2017. |
[Cheng Guoling. Study on the Indication of Submerged Macrophytes on Ammonia Nitrogen Concentration in Dianchi lake basin[D]. Kunming: Yunnan Normal University, 2017.] | |
[11] |
尹德超, 王雨山, 祁晓凡, 等. 白洋淀湿地不同植物群落区表层沉积物碳氮磷化学计量特征[J]. 湖泊科学, 2022, 34(2): 506-516.
doi: 10.18307/2022.0212 |
[Yin Dechao, Wang Yushan, Qi Xiaofan, et al. Stoichiometric characteristics of carbon, nitrogen and phosphorus in surface sediments of different plant communitites in lake Baiyangdian wetland[J]. Journal of Lake Sciences, 2022, 34(2): 506-516.]
doi: 10.18307/2022.0212 |
|
[12] | 包先明, 陈开宁, 范成新, 等. 种植沉水植物和疏浚底泥对氮磷营养水平的影响[J]. 土壤通报, 2006, 44(5): 932-935. |
[Bao Xianming, Cheng Kaining, Fan Chengxing, et al. Effects of growth of submerged macrophytes on nitrogen level of dredged sediment of a eutrophic lake[J]. Chinese Journal of Soil Science, 2006, 44(5): 932-935.] | |
[13] |
Cong Hu, Feng Li, Yonghong Xie, et al. Spatial distribution and stoichiometry of soil carbon, nitrogen and phosphorus along an elevation gradient in a wetland in China[J]. European Journal of Soil Science, 2019, 70(6): 1128-1140.
doi: 10.1111/ejss.12821 |
[14] | 寻亚非, 李映雪, 王佳俊, 等. 拉鲁湿地植物和底泥氮磷生态化学计量学特征[J]. 环境化学, 2021, 40(7): 2105-2114. |
[Xun Yafei, Li Yingxue, Wang Jiajun, et al. Ecological stoichiometry characteristics of nitrogen and phosphorus in plants and sediments in Lhalu wetland[J]. Environmental Chemistry, 2021, 40(7): 2105-2114.] | |
[15] | 何玉实. 银川平原水域湿地微生物群落结构特征及其对环境的响应[D]. 银川: 宁夏大学, 2022. |
[He Yushi. Structure Characteristics of Microbial Community in Water Wetland of Yinchuan Plain and its Response to the Environment[D]. Yinchuan: Ningxia University, 2022.] | |
[16] |
Demars B O L, Harper D M. The aquatic macrophytes of an English lowland river system: Assessing response to nutrient enrichment[J]. Hydrobiologia, 1998, 384(1-3): 75-88.
doi: 10.1023/A:1003203512565 |
[17] | Nurminen L. Macrophyte species composition reflecting water quality changes in adjacent water bodies of lake Hiidenvesi, SW Finland[J]. Annales Botanici Fennici, 2003, 40(3): 199-208. |
[18] |
王婷, 张永超, 赵之重. 青藏高原退化高寒湿地植被群落结构和土壤养分变化特征[J]. 草业学报, 2020, 29(4): 9-18.
doi: 10.11686/cyxb2019378 |
[Wang Ting, Zhang Yongchao, Zhao Zhizhong. Characteristics of the vegetation community and soil nutrient status in a degraded alpine wetland of Qinghai-Tibet Plateau[J]. Acta Prataculturae Sinica, 2020, 29(4): 9-18.]
doi: 10.11686/cyxb2019378 |
|
[19] |
Zhang Zhenchao, Liu Yu, Su Jian, et al. Suitable duration of grazing exclusion for restoration of a degraded alpine meadow on the eastern Qinghai-Tibetan Plateau[J]. Catena, 2021, 207: 105582.
doi: 10.1016/j.catena.2021.105582 |
[20] |
许岳飞, 益西措姆, 付娟娟, 等. 青藏高原高山嵩草草甸植物多样性和土壤养分对放牧的响应机制[J]. 草地学报, 2012, 20(6): 1026-1032.
doi: 10.11733/j.issn.1007-0435.2012.06.007 |
[Xu Yuefei, Yixi Cuomu, Fu Juanjuan, et al. Response of plant diversity and soil nutrients to grazing intensity in kobresia pygmaea meadow of Qinghai-Tibet Plateau[J]. Acta Agrestia Sinica, 2012, 20(6): 1026-1032.]
doi: 10.11733/j.issn.1007-0435.2012.06.007 |
|
[21] | 中国植被编辑委员会. 中国植被[M]. 北京: 科学出版社, 1980. |
[China Vegetation Editorial Committee. Vegetation of China[M]. Beijing: Science Press, 1980.] | |
[22] |
Fauvel M, Lopes M, Dubo T, et al. Prediction of plant diversity in grasslands using Sentinel-1 and-2 satellite image time series[J]. Remote Sensing of Environment, 2020, 237: 111536.
doi: 10.1016/j.rse.2019.111536 |
[23] | 蒋芷榆, 孙艺伦, 张婧然, 等. 利用休耕田处理水产养殖废水同步增强土壤营养的试验[J]. 净水技术, 2022, 41(2): 118-126. |
[Jiang Zhiyu, Sun Yilun, Zhang Jingran, et al. Experiment of fallow-cropland applied in aquaculture wastewater treatment and synchronous soil fertility improvement[J]. Water Purification Technology, 2022, 41(2): 118-126.] | |
[24] | 何文凯. 富营养化水体中沉水植被恢复重建影响因子研究——底泥特性对沉水植物生长的影响[D]. 武汉: 武汉大学, 2017. |
[He Wenkai. Research on Influence Factors of Submerged Macrophytes Restoration in Eutrophic Water-the Effects of Sediment Properties to the Growth of Submerged Macrophytes[D]. Wuhan: Wuhan University, 2017.] | |
[25] |
Davidson E A, Trumbore S E, Amundson R. Soil warming and organic carbon content[J]. Nature, 2000, 408: 789-790.
doi: 10.1038/35048672 |
[26] |
郗敏, 孔范龙, 吕宪国, 等. 三江平原沟渠系统水体和底泥的养分特征及效应[J]. 地理科学, 2014, 34(3): 358-364.
doi: 10.13249/j.cnki.sgs.2014.03.358 |
[Xi Min, Kong Fanlong, Lv Xianguo, et al. Nutrient variation in water and sediments of ditch wetlands and their effects on environment in Sanjiang plain, China[J]. Scientia Geographica Sinica, 2014, 34(3): 358-364.]
doi: 10.13249/j.cnki.sgs.2014.03.358 |
|
[27] | 李小乐, 魏亚娟, 党晓宏, 等. 红砂灌丛沙堆土壤粒度组成及养分积累特征[J]. 干旱区研究, 2022, 39(3): 933-942. |
[Li Xiaole, Wei Yajuan, Dang Xiaohong, et al. Soil mechanical composition and soil nutrient contentof Reaumuria soongorica nebkhas[J]. Arid Zone Research, 2022, 39(3): 933-942.] | |
[28] | 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947. |
[Wang Shaoqiang, Yu Guirui. Ecological stoichiometry characteristics of ecosystem Rcarbon, nitrogen andphosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937-3947.] | |
[29] | 李玉武. 西双版纳热带森林生态系统土壤养分动态研究[D]. 西双版纳: 中国科学院西双版纳热带植物园, 2013. |
[Li Yuwu. Seasonal Dynamics of Soil Nutrients under the Tropical Forest Ecosystem in Xishuangbanna, Southwest China[J]. Xishuangbanna: Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, 2013.] | |
[30] | 黄小龙, 郭艳敏, 张毅敏, 等. 沉水植物对湖泊沉积物氮磷内源负荷的控制及应用[J]. 生态与农村环境学报, 2019, 35(12): 1524-1530. |
[Huang Xiaolong, Guo Yanmin, Zhang Yimin, et al. Controlling of internal phosphorus and nitrogen loading in lake sediment by submerged macrophytes and its application[J]. Journal of Ecology and Rural Environment, 2019, 35(12): 1524-1530.] | |
[31] | 李志亮, 仲跻文. 生化需氧量、 化学需氧量、高锰酸盐指数三者关系简析[J]. 水利技术监督, 2015, 23(1): 5-6. |
[Li Zhiliang, Zhong Jiwen. Analysis of the relationship among biochemical oxygen demand, chemical oxygen demand and permanganate index[J]. Technical Supervision in Water Resources, 2015, 23(1): 5-6.] | |
[32] | 邢鏻木, 李强, 高原千惠, 等. 不同供磷水平对紫花苜蓿根际微生物功能多样性的影响[J]. 干旱区研究, 2022, 39(5): 1496-1503. |
[Xing Linmu, LI Qiang, Gao Yuanqianhui, et al. Effect of different phosphorus supply levels on rhizosphere microbial functionaldiversity of Medicago sativa[J]. Arid Zone Research, 2022, 39(5): 1496-1503.] | |
[33] | 韩冰, 陈融旭, 梁帅, 等. 3种沉水植物净化引黄灌区退水的应用潜力[J]. 中国农村水利水电, 2022, (2): 6-11, 19. |
[Han Bing, Cheng Rongxun, Liang Shuai, et al. Application potential of three submerged macrophytes in the purification of returned water in yellow river irrigation area[J]. China Rural Water and Hydropower, 2022, (2): 6-11, 19.] | |
[34] | 侍世玲, 任晓萌, 张晓伟, 等. 库布齐沙漠沙枣防护林土壤养分及化学计量特征[J]. 干旱区研究, 2022, 39(2): 469-476. |
[Shi Shiling, Ren Xiaomeng, Zhang Xiaowei, et al. Soil nutrients and stoichiometric characteristics of the Elaeagnus angustifoliashelterbelt in the Hobq Desert[J]. Arid Zone Research, 2022, 39(2): 469-476.] | |
[35] |
Bole J B, Allan J R. Uptake of phosphorus from sediment by aquatic plants, Myriophyllum spicatum and Hydrilla verticillata[J]. Water Research, 1978, 12(5): 353-358.
doi: 10.1016/0043-1354(78)90123-9 |
[36] | 董世魁, 汤琳, 张相锋, 等. 高寒草地植物物种多样性与功能多样性的关系[J]. 生态学报, 2017, 37(5): 1472-1483. |
[Dong Shikui, Tang Lin, Zhang Xiangfeng, et al. Relationship between plant species diversity and functional diversity in alpine grasslands[J]. Acta Ecologica Sinica, 2017, 37(5): 1472-1483.] |
[1] | 姚春艳, 刘洪鹄, 刘竞. 长江源区1980—2020年水沙变化规律[J]. 干旱区研究, 2023, 40(5): 726-736. |
[2] | 王晓雨, 马瑞, 张富, 胡彦婷, 王玲莉, 蒋承洋, 陈素娥. 关川河上游水沙变化特征及其对降水和水保措施的响应[J]. 干旱区研究, 2023, 40(11): 1765-1775. |
[3] | 王冠正, 常顺利, 王建萍, 张毓涛, 孙雪娇, 李翔. 不同坡向雪岭云杉天然更新影响因素分析[J]. 干旱区研究, 2023, 40(10): 1661-1669. |
[4] | 付沙沙, 彭威, 邵爱梅, 蔡迪花, 罗苗欣, 刘兆京. 秦巴山区夏季NDVI变化特征及其对气候因子的响应[J]. 干旱区研究, 2023, 40(10): 1563-1574. |
[5] | 崔珍珍,马超,陈登魁. 1982—2015年科尔沁沙地植被时空变化及气候响应[J]. 干旱区研究, 2021, 38(2): 536-544. |
[6] | 李均力, 肖 昊, 沈占锋, 白 洁. 2013—2018年塔里木河下游植被动态变化 及其对生态输水的响应[J]. 干旱区研究, 2020, 37(4): 985-992. |
[7] | 何航, 张勃, 候启, 李帅, 马彬, 马尚谦. 1982—2015年中国北方生长季NDVI变化及其对气温极值的响应[J]. 干旱区研究, 2020, 37(1): 244-253. |
[8] | 刘蕊, 王勇辉, 姜盛夏, 张瑞波, 秦莉, Bulkajyr T.Mambetov, Nurzhan Kelgenbayev, Daniyar Dosmanbetov, Bagila Maisupova, 张同文. 哈萨克斯坦阿尔泰山树木径向生长及其对气候要素的响应 [J]. 干旱区研究, 2019, 36(3): 723-733. |
[9] | 李均力, 白洁, 王亚俊. 1964—2015年阿牙克库木湖时序变化的气候响应[J]. 干旱区研究, 2018, 35(01): 85-95. |
[10] | 张瑞波, 袁玉江, 魏文寿, 尚华明, 喻树龙, 张同文, 陈峰, 范子昂, 秦莉. 西伯利亚落叶松树轮稳定碳同位素对气候的响应[J]. 干旱区研究, 2012, 29(2): 328-334. |
|