干旱区研究 ›› 2023, Vol. 40 ›› Issue (8): 1258-1267.doi: 10.13866/j.azr.2023.08.06 cstr: 32277.14.j.azr.2023.08.06

• 水土资源 • 上一篇    下一篇

基于随机森林算法的土壤含盐量预测

李小雨(),贾科利(),魏慧敏,陈睿华,王怡婧   

  1. 宁夏大学地理科学与规划学院,宁夏 银川 750021
  • 收稿日期:2023-01-06 修回日期:2023-06-12 出版日期:2023-08-15 发布日期:2023-08-24
  • 作者简介:李小雨(1997-),女,硕士研究生,主要从事遥感监测与分析研究. E-mail: lixiaoyu032@163.com
  • 基金资助:
    国家自然科学基金项目(42061047);国家自然科学基金项目(42067003);宁夏回族自治区重点研发计划项目(2021BEG03002);国家重点研发计划项目(2021YFD1900602)

Prediction of soil salt content based on the random forest algorithm

LI Xiaoyu(),JIA Keli(),WEI Huimin,CHEN Ruihua,WANG Yijing   

  1. College of Geographical Sciences and Planning, Ningxia University, Yinchuan 750021, Ningxia, China
  • Received:2023-01-06 Revised:2023-06-12 Published:2023-08-15 Online:2023-08-24

摘要:

快速监测区域土壤盐渍化信息,对于盐渍化治理与生态环境保护具有重要意义。本文以Sentinel-2A和Landsat8 OLI遥感影像为数据源,以银川平原为研究区,利用谷歌地球引擎(Google Earth Engine,GEE)平台,基于随机森林算法,通过建立光谱指数特征与地面实测土壤含盐量之间的关系,进行土壤含盐量估算。结果表明:GEE能够为土壤含盐量预测提供可靠的数据支撑;以Sentinel-2A为数据源建立的随机森林模型具有更好的预测精度(R2=0.789,RMSE=1.487),优于Landsat8 OLI,可用于土壤含盐量高分辨率遥感估算,能够为大尺度土壤含盐量监测工作提供理论支撑。

关键词: 土壤含盐量, Google Earth Engine, 随机森林, 预测, 银川平原

Abstract:

Soil salinization caused by natural and anthropogenic factors is an environmental hazard that is especially important in arid and semi-arid regions of the world. The accumulation of salts in soil is a major threat to crop production and global agriculture. Therefore, the rapid and precise detection of salt-affected lands is highly critical for sustaining soil productivity. This paper aims to analyze the performance of the random forest algorithm in mapping soil salinity in the Yinchuan Plain using Landsat-8 OLI, Sentinel-2A satellite images, and ground-based soil salt content (SSC) measurements with the aid of the Google Earth Engine (GEE) platform. We estimated SSC by establishing the relationship between spectral index characteristics and ground-measured soil salt content. The results show that GEE can provide reliable data support for soil salinity prediction. The random forest model established with Sentinel-2A as the data source performed better (R2 = 0.789, RMSE = 1.487) than and can therefore be used for the estimation of soil salinity using high-resolution remote sensing, which can provide theoretical support for large-scale soil salinity monitoring.

Key words: soil salt content, Google Earth Engine, random forest, predict, Yinchuan Plain